Dimension-free log-Sobolev inequalities for mixture distributions

被引:15
作者
Chen, Hong-Bin [1 ]
Chewi, Sinho [2 ]
Niles-Weed, Jonathan [1 ]
机构
[1] NYU, Courant Inst Math Sci, New York, NY 10012 USA
[2] MIT, Dept Math, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
Log-Sobolev inequality; Dimension-free; Mixture distribution; FUNCTIONAL INEQUALITIES; BOUNDS;
D O I
10.1016/j.jfa.2021.109236
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that if (P-x)(x is an element of X) is a family of probability measures which satisfy the log-Sobolev inequality and whose pairwise chi-squared divergences are uniformly bounded, and mu is any mixing distribution on X, then the mixture integral P(x)d mu(x) satisfies a log-Sobolev inequality. In various settings of interest, the resulting log-Sobolev constant is dimension-free. In particular, our result implies a conjecture of Zimmermann and Bardet et al. that Gaussian convolutions of measures with bounded support enjoy dimension-free log-Sobolev inequalities. (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 23 条
[1]  
Ambrosio L, 2008, LECT MATH, P1
[2]  
[Anonymous], 2010, STOCHASTIC MODELLING
[3]   Analysis and geometry of Markov diffusion operators [J].
Applebaum, David .
MATHEMATICAL GAZETTE, 2016, 100 (548) :372-+
[4]   Functional inequalities for Gaussian convolutions of compactly supported measures: Explicit bounds and dimension dependence [J].
Bardet, Jean-Baptiste ;
Gozlan, Nathael ;
Malrieu, Florent ;
Zitt, Pierre-Andre .
BERNOULLI, 2018, 24 (01) :333-353
[5]  
Block A, 2020, ARXIV200611166
[6]  
Block A., 2020, ARXIV200200107
[7]  
Bolley F., 2005, Annales de la Faculte des sciences de Toulouse: Mathematiques, Ser. 6, V14, P331
[8]   On fine properties of mixtures with respect to concentration of measure and Sobolev type inequalities [J].
Chafai, Djalil ;
Malrieu, Florent .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2010, 46 (01) :72-96
[9]   Entropy-SGD: biasing gradient descent into wide valleys [J].
Chaudhari, Pratik ;
Choromanska, Anna ;
Soatto, Stefano ;
LeCun, Yann ;
Baldassi, Carlo ;
Borgs, Christian ;
Chayes, Jennifer ;
Sagun, Levent ;
Zecchina, Riccardo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2019, 2019 (12)
[10]   Bounds on the Poincare constant for convolution measures [J].
Courtade, Thomas A. .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2020, 56 (01) :566-579