Matrix Autoregressive Spatio-Temporal Models

被引:7
|
作者
Hsu, Nan-Jung [1 ]
Huang, Hsin-Cheng [2 ]
Tsay, Ruey S. [3 ]
机构
[1] Natl Tsing Hua Univ, Inst Stat, Hsinchu, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
关键词
Bilinear autoregression; Dimension reduction; Matrix-variate time series; Maximum likelihood; Multi-resolution spline basis functions;
D O I
10.1080/10618600.2021.1938587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Matrix-variate time series are now common in economic, medical, environmental, and atmospheric sciences, typically associated with large matrix dimensions. We introduce a structured autoregressive (AR) model to characterize temporal dynamics in a matrix-variate time series by formulating the AR matrices in a bilinear form. This bilinear parameter structure reduces the model dimension and highlights dynamic interaction among columns and rows in the AR matrices, making the model highly explainable. We further incorporate spatial information and explore sparsity in the AR coefficients by introducing spatial neighborhoods. In addition, we consider a nonstationary multi-resolution spatial covariance model for innovation errors. The resulting spatio-temporal AR model is flexible in capturing heterogeneous spatial and temporal features while maintaining a parsimonious parameterization. The model parameters are estimated by maximum likelihood (ML) with a fast algorithm developed for computation. We conduct a simulation study and present an application to a wind-speed dataset to demonstrate the merits of our methodology. Supplementary files for this article are available online.
引用
收藏
页码:1143 / 1155
页数:13
相关论文
共 50 条
  • [41] Flexible spatio-temporal stationary variogram models
    Rubén Fernández-Casal
    Wenceslao González-Manteiga
    Manuel Febrero-Bande
    Statistics and Computing, 2003, 13 : 127 - 136
  • [42] Spatial autoregression and related spatio-temporal models
    Ma, CS
    JOURNAL OF MULTIVARIATE ANALYSIS, 2004, 88 (01) : 152 - 162
  • [43] Editorial: Spatio-Temporal Data Models and Languages
    Stefano Spaccapietra
    GeoInformatica, 2001, 5 : 5 - 9
  • [44] Spatio-temporal Graphical Models for Extreme Events
    Yu, Hang
    Zhang, Liaofan
    Dauwels, Justin
    2014 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2014, : 2032 - 2036
  • [45] On hypotheses testing for the selection of spatio-temporal models
    Antunes, Ana Monica C.
    Rao, Tata Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2006, 27 (05) : 767 - 791
  • [46] Time varying spatio-temporal covariance models
    Ip, Ryan H. L.
    Li, W. K.
    SPATIAL STATISTICS, 2015, 14 : 269 - 285
  • [47] Annoyance Models for Videos with Spatio-Temporal Artifacts
    Silva, Alexandre F.
    Farias, Mylene C. Q.
    Redi, Judith A.
    2016 EIGHTH INTERNATIONAL CONFERENCE ON QUALITY OF MULTIMEDIA EXPERIENCE (QOMEX), 2016,
  • [48] Spatio-temporal Models of Lymphangiogenesis in Wound Healing
    Arianna Bianchi
    Kevin J. Painter
    Jonathan A. Sherratt
    Bulletin of Mathematical Biology, 2016, 78 : 1904 - 1941
  • [49] Spatio-temporal background models for outdoor surveillance
    Pless, R. (pless@cse.wustl.edu), 1600, Hindawi Publishing Corporation (2005):
  • [50] Spatio-temporal Background Models for Outdoor Surveillance
    Robert Pless
    EURASIP Journal on Advances in Signal Processing, 2005