Matrix Autoregressive Spatio-Temporal Models

被引:8
|
作者
Hsu, Nan-Jung [1 ]
Huang, Hsin-Cheng [2 ]
Tsay, Ruey S. [3 ]
机构
[1] Natl Tsing Hua Univ, Inst Stat, Hsinchu, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
关键词
Bilinear autoregression; Dimension reduction; Matrix-variate time series; Maximum likelihood; Multi-resolution spline basis functions;
D O I
10.1080/10618600.2021.1938587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Matrix-variate time series are now common in economic, medical, environmental, and atmospheric sciences, typically associated with large matrix dimensions. We introduce a structured autoregressive (AR) model to characterize temporal dynamics in a matrix-variate time series by formulating the AR matrices in a bilinear form. This bilinear parameter structure reduces the model dimension and highlights dynamic interaction among columns and rows in the AR matrices, making the model highly explainable. We further incorporate spatial information and explore sparsity in the AR coefficients by introducing spatial neighborhoods. In addition, we consider a nonstationary multi-resolution spatial covariance model for innovation errors. The resulting spatio-temporal AR model is flexible in capturing heterogeneous spatial and temporal features while maintaining a parsimonious parameterization. The model parameters are estimated by maximum likelihood (ML) with a fast algorithm developed for computation. We conduct a simulation study and present an application to a wind-speed dataset to demonstrate the merits of our methodology. Supplementary files for this article are available online.
引用
收藏
页码:1143 / 1155
页数:13
相关论文
共 50 条
  • [31] An Application of Principal Component Analysis on Multivariate Time-stationary Spatio-temporal Data
    Stahlschmidt, Stephan
    Haerdle, Wolfgang K.
    Thome, Helmut
    SPATIAL ECONOMIC ANALYSIS, 2015, 10 (02) : 160 - 180
  • [32] Interpolation of spatial and spatio-temporal Gaussian fields using Gaussian Markov random fields
    Fontanella, L.
    Ippoliti, L.
    Martin, R. J.
    Trivisonno, S.
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2009, 3 (01) : 63 - 79
  • [33] Enhancing spatio-temporal environmental analyses: A machine learning superpixel-based approach
    Estefania-Salazar, Enrique
    Iglesias, Eva
    HELIYON, 2024, 10 (14)
  • [34] Probabilistic PCA Based Spatio-Temporal Multi-Modeling for Distributed Parameter Processes
    Qi Chenkun
    Li Han-Xiong
    Zhang Xian-Xia
    Zhao Xianchao
    Li Shaoyuan
    Gao Feng
    2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 1499 - 1504
  • [35] Data-Driven Spatio-Temporal Modeling Using the Integro-Difference Equation
    Dewar, Michael
    Scerri, Kenneth
    Kadirkamanathan, Visakan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2009, 57 (01) : 83 - 91
  • [36] Spatio-temporal smoothing and EM estimation for massive remote-sensing data sets
    Katzfuss, Matthias
    Cressie, Noel
    JOURNAL OF TIME SERIES ANALYSIS, 2011, 32 (04) : 430 - 446
  • [37] Spatio-temporal Analysis of the Genetic Diversity of Arctic Rabies Viruses and Their Reservoir Hosts in Greenland
    Hanke, Dennis
    Freuling, Conrad M.
    Fischer, Susanne
    Hueffer, Karsten
    Hundertmark, Kris
    Nadin-Davis, Susan
    Marston, Denise
    Fooks, Anthony R.
    Botner, Anette
    Mettenleiter, Thomas C.
    Beer, Martin
    Rasmussen, Thomas B.
    Mueller, Thomas F.
    Hoeper, Dirk
    PLOS NEGLECTED TROPICAL DISEASES, 2016, 10 (07):
  • [38] Lensless In-Line Holographic Microscopy With Light Source of Low Spatio-Temporal Coherence
    Kumar, Sanjeev
    Mahadevappa, Manjunatha
    Dutta, Pranab Kumar
    IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2021, 27 (04)
  • [39] Monocular tracking 3D people by Gaussian process spatio-temporal variable model
    Pang, Junbiao
    Qing, Laiyun
    Huang, Qingming
    Jiang, Shuqiang
    Gao, Wen
    2007 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-7, 2007, : 2293 - +
  • [40] Predicting intra-urban variation in air pollution concentrations with complex spatio-temporal dependencies
    Szpiro, Adam A.
    Sampson, Paul D.
    Sheppard, Lianne
    Lumley, Thomas
    Adar, Sara D.
    Kaufman, Joel D.
    ENVIRONMETRICS, 2010, 21 (06) : 606 - 631