Matrix Autoregressive Spatio-Temporal Models

被引:7
|
作者
Hsu, Nan-Jung [1 ]
Huang, Hsin-Cheng [2 ]
Tsay, Ruey S. [3 ]
机构
[1] Natl Tsing Hua Univ, Inst Stat, Hsinchu, Taiwan
[2] Acad Sinica, Inst Stat Sci, Taipei, Taiwan
[3] Univ Chicago, Booth Sch Business, Chicago, IL 60637 USA
关键词
Bilinear autoregression; Dimension reduction; Matrix-variate time series; Maximum likelihood; Multi-resolution spline basis functions;
D O I
10.1080/10618600.2021.1938587
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Matrix-variate time series are now common in economic, medical, environmental, and atmospheric sciences, typically associated with large matrix dimensions. We introduce a structured autoregressive (AR) model to characterize temporal dynamics in a matrix-variate time series by formulating the AR matrices in a bilinear form. This bilinear parameter structure reduces the model dimension and highlights dynamic interaction among columns and rows in the AR matrices, making the model highly explainable. We further incorporate spatial information and explore sparsity in the AR coefficients by introducing spatial neighborhoods. In addition, we consider a nonstationary multi-resolution spatial covariance model for innovation errors. The resulting spatio-temporal AR model is flexible in capturing heterogeneous spatial and temporal features while maintaining a parsimonious parameterization. The model parameters are estimated by maximum likelihood (ML) with a fast algorithm developed for computation. We conduct a simulation study and present an application to a wind-speed dataset to demonstrate the merits of our methodology. Supplementary files for this article are available online.
引用
收藏
页码:1143 / 1155
页数:13
相关论文
共 50 条
  • [21] Additive models with spatio-temporal data
    Fang, Xiangming
    Chan, Kung-Sik
    ENVIRONMENTAL AND ECOLOGICAL STATISTICS, 2015, 22 (01) : 61 - 86
  • [22] Spatio-temporal Conditioned Language Models
    Diaz, Juglar
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 2478 - 2478
  • [23] Spatio-temporal occupancy models with INLA
    Belmont, Jafet
    Martino, Sara
    Illian, Janine
    Rue, Havard
    METHODS IN ECOLOGY AND EVOLUTION, 2024, 15 (11): : 2087 - 2100
  • [24] Conceptual models for spatio-temporal applications
    Tryfona, N
    Price, R
    Jensen, CS
    SPATIO-TEMPORAL DATABASES: THE CHROCHRONOS APPROACH, 2003, 2520 : 79 - 116
  • [25] Additive models with spatio-temporal data
    Xiangming Fang
    Kung-Sik Chan
    Environmental and Ecological Statistics, 2015, 22 : 61 - 86
  • [26] Some spatio-temporal models in immunology
    Segel, LA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2002, 12 (11): : 2343 - 2347
  • [27] Models of spatio-temporal dynamics in malaria
    Torres-Sorando, L
    Rodriguez, DJ
    ECOLOGICAL MODELLING, 1997, 104 (2-3) : 231 - 240
  • [28] On Semiparametrically Dynamic Functional-Coefficient Autoregressive Spatio-Temporal Models with Irregular Location Wide Nonstationarity
    Lu, Zudi
    Ren, Xiaohang
    Zhang, Rongmao
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (546) : 1032 - 1043
  • [29] Solar irradiance forecasting using spatio-temporal empirical kriging and vector autoregressive models with parameter shrinkage
    Yang, Dazhi
    Dong, Zibo
    Reindl, Thomas
    Jirutitijaroen, Panida
    Walsh, Wilfred M.
    SOLAR ENERGY, 2014, 103 : 550 - 562
  • [30] PreTR: Spatio-Temporal Non-Autoregressive Trajectory Prediction Transformer
    Achaji, Lina
    Barry, Thierno
    Fouqueray, Thibault
    Moreau, Julien
    Aioun, Francois
    Charpillet, Francois
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 2457 - 2464