Geometrical Effects on Nonlinear Electrodiffusion in Cell Physiology

被引:5
作者
Cartailler, J. [2 ]
Schuss, Z. [1 ]
Holcman, D. [2 ,3 ]
机构
[1] Tel Aviv Univ, Dept Math, IL-69978 Tel Aviv, Israel
[2] Ecole Normale Super, 46 Rue Ulm, F-75005 Paris, France
[3] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
基金
欧盟地平线“2020”;
关键词
Electro-diffusion; Poisson-Nernst-Planck; Electrolytes; Neurobiology; Asymptotics; Mobius conformal map; Nonlinear partial differential equation; Curvature; Cusp-shaped funnel; Nonelectroneutrality; IONIC CHANNELS; DIFFUSION; MEMBRANE; TRANSPORT; CURRENTS; MODEL;
D O I
10.1007/s00332-017-9393-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report here new electrical laws, derived from nonlinear electrodiffusion theory, about the effect of the local geometrical structure, such as curvature, on the electrical properties of a cell. We adopt the Poisson-Nernst-Planck equations for charge concentration and electric potential as a model of electrodiffusion. In the case at hand, the entire boundary is impermeable to ions and the electric field satisfies the compatibility condition of Poisson's equation. We construct an asymptotic approximation for certain singular limits to the steady-state solution in a ball with an attached cusp-shaped funnel on its surface. As the number of charge increases, they concentrate at the end of cusp-shaped funnel. These results can be used in the design of nanopipettes and help to understand the local voltage changes inside dendrites and axons with heterogeneous local geometry.
引用
收藏
页码:1971 / 2000
页数:30
相关论文
共 27 条
  • [11] BROWNIAN MOTION IN DIRE STRAITS
    Holcman, D.
    Schuss, Z.
    [J]. MULTISCALE MODELING & SIMULATION, 2012, 10 (04) : 1204 - 1231
  • [12] Narrow escape through a funnel and effective diffusion on a crowded membrane
    Holcman, D.
    Hoze, N.
    Schuss, Z.
    [J]. PHYSICAL REVIEW E, 2011, 84 (02):
  • [13] Holcman D., 2015, Stochastic Narrow Escape in Molecular and Cellular Biology, Analysis and Applications
  • [14] The new nanophysiology: regulation of ionic flow in neuronal subcompartments
    Holcman, David
    Yuste, Rafael
    [J]. NATURE REVIEWS NEUROSCIENCE, 2015, 16 (11) : 685 - 692
  • [15] Permeation Redux: Thermodynamics and Kinetics of Ion Movement through Potassium Channels
    Horn, Richard
    Roux, Benoit
    Aqvist, Johan
    [J]. BIOPHYSICAL JOURNAL, 2014, 106 (09) : 1859 - 1863
  • [16] Lindsay A.E., 2016, SIAM J MULTISCALE MO, V15, P74
  • [17] The role of the dielectric barrier in narrow biological channels: A novel composite approach to modeling single-channel currents
    Mamonov, AB
    Coalson, RD
    Nitzan, A
    Kurnikova, MG
    [J]. BIOPHYSICAL JOURNAL, 2003, 84 (06) : 3646 - 3661
  • [18] Characterization of Nanopipettes
    Perry, David
    Momotenko, Dmitry
    Lazenby, Robert A.
    Kang, Minkyung
    Unwin, Patrick R.
    [J]. ANALYTICAL CHEMISTRY, 2016, 88 (10) : 5523 - 5530
  • [19] AN ASYMPTOTIC ANALYSIS OF THE MEAN FIRST PASSAGE TIME FOR NARROW ESCAPE PROBLEMS: PART I: TWO-DIMENSIONAL DOMAINS
    Pillay, S.
    Ward, M. J.
    Peirce, A.
    Kolokolnikov, T.
    [J]. MULTISCALE MODELING & SIMULATION, 2010, 8 (03) : 803 - 835
  • [20] AN ELECTRO-DIFFUSION MODEL FOR COMPUTING MEMBRANE-POTENTIALS AND IONIC CONCENTRATIONS IN BRANCHING DENDRITES, SPINES AND AXONS
    QIAN, N
    SEJNOWSKI, TJ
    [J]. BIOLOGICAL CYBERNETICS, 1989, 62 (01) : 1 - 15