Plant proteome changes under abiotic stress - Contribution of proteomics studies to understanding plant stress response

被引:593
作者
Kosova, Klara [1 ]
Vitamvas, Pavel [1 ]
Prasil, Ilja Tom [1 ]
Renaut, Jenny [2 ]
机构
[1] Crop Res Inst, Dept Genet & Plant Breeding, Prague 16106 6, Ruzyne, Czech Republic
[2] Ctr Rech Publ, L-4422 Belvaux, Luxembourg
关键词
Plant proteome; Abiotic stress; Stress tolerance; Protein biomarkers; DIFFERENTIALLY EXPRESSED PROTEINS; SALT STRESS; COLD-ACCLIMATION; ARABIDOPSIS-THALIANA; RICE ROOTS; MASS-SPECTROMETRY; DROUGHT STRESS; POPLAR LEAVES; HEAT-STRESS; 2-DIMENSIONAL ELECTROPHORESIS;
D O I
10.1016/j.jprot.2011.02.006
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Plant acclimation to stress is associated with profound changes in proteome composition. Since proteins are directly involved in plant stress response, proteomics studies can significantly contribute to unravel the possible relationships between protein abundance and plant stress acclimation. In this review, proteomics studies dealing with plant response to a broad range of abiotic stress factors-cold, heat, drought, waterlogging, salinity, ozone treatment, hypoxia and anoxia, herbicide treatments, inadequate or excessive light conditions, disbalances in mineral nutrition, enhanced concentrations of heavy metals, radioactivity and mechanical wounding are discussed. Most studies have been carried out on model plants Arabidopsis thaliana and rice due to large protein sequence databases available; however, the variety of plant species used for proteomics analyses is rapidly increasing. Protein response pathways shared by different plant species under various stress conditions (glycolytic pathway, enzymes of ascorbate-glutathione cycle, accumulation of LEA proteins) as well as pathways unique to a given stress are discussed. Results from proteomics studies are interpreted with respect to physiological factors determining plant stress response. In conclusion, examples of application of proteornics studies in search for protein markers underlying phenotypic variation in physiological parameters associated with plant stress tolerance are given. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1301 / 1322
页数:22
相关论文
共 127 条
[1]   A proteomic approach to analyze salt-responsive proteins in rice leaf sheath [J].
Abbasi, FM ;
Komatsu, S .
PROTEOMICS, 2004, 4 (07) :2072-2081
[2]  
Agarwal GK, 2002, PROTEOMICS, V2, P947, DOI 10.1002/1615-9861(200208)2:8<947::AID-PROT947>3.0.CO
[3]  
2-J
[4]   Rice proteomics: Ending phase I and the beginning of phase II [J].
Agrawal, Ganesh Kumar ;
Jwa, Nam-Soo ;
Rakwal, Randeep .
PROTEOMICS, 2009, 9 (04) :935-963
[5]   Comparative proteomic study of arsenic-induced differentially expressed proteins in rice roots reveals glutathione plays a central role during As stress [J].
Ahsan, Nagib ;
Lee, Dong-Gi ;
Alam, Iftekhar ;
Kim, Pil Joo ;
Lee, Jeung Joo ;
Ahn, Young-Ock ;
Kwak, Sang-Soo ;
Lee, In-Jung ;
Bahk, Jeong Dong ;
Kang, Kyu Young ;
Renaut, Jenny ;
KomatsU, Setsuko ;
Lee, Byung-Hyun .
PROTEOMICS, 2008, 8 (17) :3561-3576
[6]   A comparative proteomic analysis of tomato leaves in response to waterlogging stress [J].
Ahsan, Nagib ;
Lee, Dong-Gi ;
Lee, Sang-Hoon ;
Kang, Kyu Young ;
Bahk, Jeong Dong ;
Choi, Myung Suk ;
Lee, In-Jung ;
Renaut, Jenny ;
Lee, Byung-Hyun .
PHYSIOLOGIA PLANTARUM, 2007, 131 (04) :555-570
[7]   Recent developments in the application of proteomics to the analysis of plant responses to heavy metals [J].
Ahsan, Nagib ;
Renaut, Jenny ;
Komatsu, Setsuko .
PROTEOMICS, 2009, 9 (10) :2602-2621
[8]   Thiol-peptide level and proteomic changes in response to cadmium toxicity in Oryza sativa L. roots [J].
Aina, Roberta ;
Labra, Massimo ;
Fumagalli, Pietro ;
Vannini, Candida ;
Marsoni, Milena ;
Cucchi, Ulisse ;
Bracale, Marcella ;
Sgorbati, Sergio ;
Citterio, Sandra .
ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2007, 59 (03) :381-392
[9]   Proteome analysis of soybean roots subjected to short-term drought stress [J].
Alam, Iftekhar ;
Sharmin, Shamima Akhtar ;
Kim, Kyung-Hee ;
Yang, Jae Kyung ;
Choi, Myung Suk ;
Lee, Byung-Hyun .
PLANT AND SOIL, 2010, 333 (1-2) :491-505
[10]   Proteome analysis of soybean roots under waterlogging stress at an early vegetative stage [J].
Alam, Iftekhar ;
Lee, Dong-Gi ;
Kim, Kyung-Hee ;
Park, Choong-Hoon ;
Sharmin, Shamima Akhtar ;
Lee, Hyoshin ;
Oh, Ki-Won ;
Yun, Byung-Wook ;
Lee, Byung-Hyun .
JOURNAL OF BIOSCIENCES, 2010, 35 (01) :49-62