Spectral-element method with an optimal mass matrix for seismic wave modelling

被引:2
作者
Liu, Shaolin [1 ,2 ]
Yang, Dinghui [3 ]
Xu, Xiwei [1 ]
Wang, Wenshuai [4 ]
Li, Xiaofan [5 ]
Meng, Xueli [1 ,4 ]
机构
[1] Natl Inst Nat Hazards, Minist Emergency Management China, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Geol & Geophys, State Key Lab Lithospher Evolut, Beijing, Peoples R China
[3] Tsinghua Univ, Dept Math Sci, Beijing 100084, Peoples R China
[4] Ningxia Univ, Sch Math & Stat, Yinchuan, Ningxia, Peoples R China
[5] China Univ Geosci, Inst Geophys & Geomat, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
Spectral-element method; numerical integration; seismic wave modelling; forward modelling; DISCONTINUOUS GALERKIN METHOD; FINITE-DIFFERENCE; PROPAGATION; SCHEME; DISPERSION; EQUATION; STABILITY; OPERATORS; DYNAMICS;
D O I
10.1080/08123985.2022.2043126
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The spectral-element method (SEM), which combines the flexibility of the finite element method (FEM) with the accuracy of spectral method, has been successfully applied to simulate seismic wavefields in geological models on different scales. One kind of SEMs that adopts orthogonal Legendre polynomials is widely used in seismology community. In the SEM with orthogonal Legendre polynomials, the Gauss-Lobatto-Legendre (GLL) quadrature rule is employed to calculate the integrals involved in the SEM leading to a diagonal mass matrix. However, the GLL quadrature rule can exactly approximate only integrals with a polynomial degree below 2N-1 (N is the interpolation order in space) and cannot exactly calculate those of polynomials with degree 2N involved in the mass matrix. Therefore, the error of the mass matrix originating from inexact numerical integration may reduce the accuracy of the SEM. To improve the SEM accuracy, we construct a least-squares objective function in terms of numerical and exact integrals to increase the accuracy of the GLL quadrature rule. Then, we utilise the conjugate gradient method to solve the objective function and obtain a set of optimal quadrature weights. The optimal mass matrix can be obtained simultaneously by utilising the GLL quadrature rule with optimal integration weights. The improvement in the numerical accuracy of the SEM with an optimal mass matrix (OSEM) is demonstrated by theoretical analysis and numerical examples.
引用
收藏
页码:683 / 693
页数:11
相关论文
共 50 条
[11]   Discontinuous Galerkin finite element method for the wave equation [J].
Grote, Marcus J. ;
Schneebeli, Anna ;
Schoetzau, Dominik .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2006, 44 (06) :2408-2431
[12]   A modified numerical-flux-based discontinuous Galerkin method for 2D wave propagations in isotropic and anisotropic media [J].
He, Xijun ;
Yang, Dinghui ;
Ma, Xiao ;
Qiu, Chujun .
GEOPHYSICS, 2020, 85 (05) :T257-T273
[13]   A weighted Runge-Kutta discontinuous Galerkin method for wavefield modelling [J].
He, Xijun ;
Yang, Dinghui ;
Wu, Hao .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2015, 200 (03) :1389-1410
[14]   Determining the optimal coefficients of the explicit finite-difference scheme using the Remez exchange algorithm [J].
He, Zheng ;
Zhang, Jinhai ;
Yao, Zhenxing .
GEOPHYSICS, 2019, 84 (03) :S137-S147
[15]   METHODS OF CONJUGATE GRADIENTS FOR SOLVING LINEAR SYSTEMS [J].
HESTENES, MR ;
STIEFEL, E .
JOURNAL OF RESEARCH OF THE NATIONAL BUREAU OF STANDARDS, 1952, 49 (06) :409-436
[16]  
Komatitsch D, 1998, B SEISMOL SOC AM, V88, P368
[17]   Introduction to the spectral element method for three-dimensional seismic wave propagation [J].
Komatitsch, D ;
Tromp, J .
GEOPHYSICAL JOURNAL INTERNATIONAL, 1999, 139 (03) :806-822
[18]   Spectral-element simulations of global seismic wave propagation - I. Validation [J].
Komatitsch, D ;
Tromp, J .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2002, 149 (02) :390-412
[19]   Comparative study of the free-surface boundary condition in two-dimensional finite-difference elastic wave field simulation [J].
Lan, Haiqiang ;
Zhang, Zhongjie .
JOURNAL OF GEOPHYSICS AND ENGINEERING, 2011, 8 (02) :275-286
[20]   Global adjoint tomography-model GLAD-M25 [J].
Lei, Wenjie ;
Ruan, Youyi ;
Bozdag, Ebru ;
Peter, Daniel ;
Lefebvre, Matthieu ;
Komatitsch, Dimitri ;
Tromp, Jeroen ;
Hill, Judith ;
Podhorszki, Norbert ;
Pugmire, David .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 223 (01) :1-21