IGF-1 induces growth, survival and morphological change of primary Hepatocytes on a galactose-bared polymer through both MAPK and β-catenin pathways

被引:9
作者
Kundu, AK [1 ]
Nagaoka, M [1 ]
Chowdhury, EH [1 ]
Hirose, S [1 ]
Sasagawa, T [1 ]
Akaike, T [1 ]
机构
[1] Tokyo Inst Technol, Grad Sch Biosci & Biotechnol, Dept Biomol Engn, Midori Ku, Yokohama, Kanagawa 2268501, Japan
关键词
IGF-1; MAPK; proliferation; PVLA; beta-catenin;
D O I
10.1247/csf.28.255
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
PVLA poly-(N-p-vinylbenzyl-O-beta-D-galactopyranosyl-D-gluconamide) is a glycopolymer composed of hydrophilic carbohydrate side chain and hydrophobic styrene polymer. The hydrophilic carbohydrate residue of PVLA can be recognized as a ligand for hepatocytes asialoglycoprotein receptor (ASGP-R), which is abundant on the hepatocyte cell surface. Adhering to the PVLA coated dishes, hepatocytes try to form aggregates that have a long time survival and also cells in these aggregates exhibit better maintenance of specific hepatocyte functions. Stimulation of the cells with IGF-1 in this culture condition results in the formation of lower aggregates. In addition to the morphological influences of IGF-1 to these cells, we have also found that IGF-1 transmits growth stimulatory responses to hepatocytes on PVLA through both mitogen activated protein kinase (MAPK) pathway and beta-catenin pathways. The phosphorylation of MAPK can take place within 5 min of stimulation with IGF-1 and within at least 10 ng/ml of IGF-1 concentration. Inhibition of MAPK activation by MEK-1 inhibitor PD98059 reduces IGF-1 induced MAPK phosphorylation, and also IGF-1 stimulated DNA synthesis. Similarly, the use of PI3-K inhibitor LY294002 also inhibits IGF-1 stimulated DNA synthesis. IGF-1 stimulation enhances the migration of beta-catenin from the cytoskeleton and cell membrane to the cytoplasm which also is the reason behind formation of spheroids and lower aggregates. IGF-1 stimulation also shows increased translocalization of beta-catenin to the nucleus that is essentially important to produce beta-catenin responsive effects to the cells. These studies thus suggest that IGF-1 can stimulate the growth and survival of hepatocytes on PVLA through both MAPK and beta-catenin signaling pathways, and that the activation of beta-catenin signaling pathway produces the morphological changes of IGF-1 induced cells.
引用
收藏
页码:255 / 263
页数:9
相关论文
共 34 条
[1]   PD-098059 IS A SPECIFIC INHIBITOR OF THE ACTIVATION OF MITOGEN-ACTIVATED PROTEIN-KINASE KINASE IN-VITRO AND IN-VIVO [J].
ALESSI, DR ;
CUENDA, A ;
COHEN, P ;
DUDLEY, DT ;
SALTIEL, AR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1995, 270 (46) :27489-27494
[2]   The E-cadherin-catenin complex in tumour metastasis: structure, function and regulation [J].
Beavon, IRG .
EUROPEAN JOURNAL OF CANCER, 2000, 36 (13) :1607-1620
[3]   Functional interaction of an axin homolog, conductin, with β-catenin, APC, and GSK3β [J].
Behrens, J ;
Jerchow, BA ;
Würtele, M ;
Grimm, J ;
Asbrand, C ;
Wirtz, R ;
Kühl, M ;
Wedlich, D ;
Birchmeier, W .
SCIENCE, 1998, 280 (5363) :596-599
[4]   Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and cancer [J].
Ben-Ze'ev, A ;
Geiger, B .
CURRENT OPINION IN CELL BIOLOGY, 1998, 10 (05) :629-639
[5]   The tuberous sclerosis-1 (TSC1) gene product hamartin suppresses cell growth and augments the expression of the TSC2 product tuberin by inhibiting its ubiquitination [J].
Benvenuto, G ;
Li, SW ;
Brown, SJ ;
Braverman, R ;
Vass, WC ;
Cheadle, JP ;
Halley, DJJ ;
Sampson, JR ;
Wienecke, R ;
DeClue, JE .
ONCOGENE, 2000, 19 (54) :6306-6316
[6]   Wnt signaling: a common theme in animal development [J].
Cadigan, KM ;
Nusse, R .
GENES & DEVELOPMENT, 1997, 11 (24) :3286-3305
[7]   INSULIN-LIKE GROWTH FACTOR-I BINDING IN HEPATOCYTES FROM HUMAN-LIVER, HUMAN HEPATOMA, AND NORMAL, REGENERATING, AND FETAL-RAT LIVER [J].
CARO, JF ;
POULOS, J ;
ITTOOP, O ;
PORIES, WJ ;
FLICKINGER, EG ;
SINHA, MK .
JOURNAL OF CLINICAL INVESTIGATION, 1988, 81 (04) :976-981
[8]   The cadherin-catenin adhesion system in signaling and cancer [J].
Conacci-Sorrell, M ;
Zhurinsky, J ;
Ben-Ze'ev, A .
JOURNAL OF CLINICAL INVESTIGATION, 2002, 109 (08) :987-991
[9]   INHIBITION OF GLYCOGEN-SYNTHASE KINASE-3 BY INSULIN-MEDIATED BY PROTEIN-KINASE-B [J].
CROSS, DAE ;
ALESSI, DR ;
COHEN, P ;
ANDJELKOVICH, M ;
HEMMINGS, BA .
NATURE, 1995, 378 (6559) :785-789
[10]   Insulin and IGF-1 stimulate the β-catenin pathway through two signalling cascades involving GSK-3β inhibition and Ras activation [J].
Desbois-Mouthon, C ;
Cadoret, A ;
Blivet-Van Eggelpoël, MJ ;
Bertrand, F ;
Cherqui, G ;
Perret, C ;
Capeau, J .
ONCOGENE, 2001, 20 (02) :252-259