A Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation

被引:18
作者
Cong, Hongzi [1 ]
Mi, Lufang [2 ]
Wang, Peizhen [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R China
[2] Binzhou Univ, Coll Sci, Inst Aeronaut Engn & Technol, Shandong 256600, Peoples R China
关键词
Unbounded perturbation; Nekhoroshev estimate; Hamiltonian system; Derivative nonlinear Schrodinger equation; KLEIN-GORDON EQUATIONS; HAMILTONIAN-SYSTEMS; GLOBAL EXISTENCE; CAUCHY DATA; STABILITY; DIMENSION;
D O I
10.1016/j.jde.2019.11.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is proved a Nekhoroshev type theorem for the derivative nonlinear Schrodinger equation in a Gevrey space. More precisely, we prove that if the norm of initial datum is equal to epsilon/2, then ifs is small enough, the norm of the solution of the nonlinear Schrodinger equation above is bounded by 2 epsilon over a very long time interval of order e(vertical bar In epsilon vertical bar 1+beta), where 0 < beta < 1/2 is arbitrary. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:5207 / 5256
页数:50
相关论文
共 25 条
[1]   Time quasi-periodic gravity water waves in finite depth [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Haus, Emanuele ;
Montalto, Riccardo .
INVENTIONES MATHEMATICAE, 2018, 214 (02) :739-911
[2]   Almost global existence for Hamiltonian semilinear Klein-Gordon equations with small Cauchy data on zoll manifolds [J].
Bambusi, D. ;
Delort, J.-M. ;
Grebert, B. ;
Szeftel, J. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2007, 60 (11) :1665-1690
[3]   Birkhoff normal form for partial differential equations with tame modulus [J].
Bambusi, D. ;
Grebert, B. .
DUKE MATHEMATICAL JOURNAL, 2006, 135 (03) :507-567
[4]   Nekhoroshev theorem for small amplitude solutions in nonlinear Schrodinger equations [J].
Bambusi, D .
MATHEMATISCHE ZEITSCHRIFT, 1999, 230 (02) :345-387
[5]   A NEKHOROSHEV-TYPE THEOREM FOR HAMILTONIAN-SYSTEMS WITH INFINITELY MANY DEGREES OF FREEDOM [J].
BENETTIN, G ;
FROHLICH, J ;
GIORGILLI, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 119 (01) :95-108
[6]  
Bernier J., 2018, ARXIV181211414
[7]  
Berti M., 2017, ARXIV170204674
[8]  
Biasco Luca, 2018, ARXIV181006440
[9]   Construction of approximative and almost periodic solutions of perturbed linear Schrodinger and wave equations [J].
Bourgain, J .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1996, 6 (02) :201-230
[10]   On invariant tori of full dimension for 1D periodic NLS [J].
Bourgain, J .
JOURNAL OF FUNCTIONAL ANALYSIS, 2005, 229 (01) :62-94