A systematic study of heteroclinic cycles in dynamical systems with broken symmetries

被引:11
作者
Lauterbach, R [1 ]
MaierPaape, S [1 ]
Reissner, E [1 ]
机构
[1] UNIV AUGSBURG,INST MATH,D-86135 AUGSBURG,GERMANY
关键词
D O I
10.1017/S030821050002312X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X be a Banach space or a manifold and G a compact Lie group acting on X. We study G-equivariant (semi) flows on X in the context of forced symmetry breaking. After applying small symmetry breaking perturbations, certain generic invariant manifolds of the above Bows persist slightly changed. We obtain necessary and sufficient conditions for the existence of heteroclinic cycles on the perturbed manifolds. Applications are given for the case G=SO(3).
引用
收藏
页码:885 / 909
页数:25
相关论文
共 9 条
[1]  
Bredon G. E., 1972, PURE APPL MATH, V46
[2]  
Chow Shui Nee, 1982, GRUNDLEHREN MATH WIS, V251
[3]  
Golubitsky M., 1988, APPL MATH SCI, V69
[4]  
Hirsch M. W., 1977, LECT NOTES MATH, V583
[5]   PATTERN SELECTION WITH O(3) SYMMETRY [J].
IHRIG, E ;
GOLUBITSKY, M .
PHYSICA D, 1984, 13 (1-2) :1-33
[6]  
LAUTERBACH R, 1992, J DIFFER EQUATIONS, V100, P428
[7]  
MAIERPAAPE S, UNPUB REACTION DIFFU
[8]  
REISSNER E, 1993, THESIS U AUGSBURG
[9]  
Schwarz G. W., 1980, Publ. Math. Inst. Hautes Etudes Sci, V51, P37