A Na+/H+ antiporter, K2-NhaD, improves salt and drought tolerance in cotton (Gossypium hirsutum L.)

被引:16
|
作者
Guo, Wenfang [1 ,2 ]
Li, Gangqiang [3 ]
Wang, Nan [3 ]
Yang, Caifeng [3 ]
Zhao, Yanan [3 ]
Peng, Huakang [3 ]
Liu, Dehu [3 ]
Chen, Sanfeng [1 ,2 ]
机构
[1] China Agr Univ, State Key Lab Agrobiotechnol, Beijing 100094, Peoples R China
[2] China Agr Univ, Coll Biol Sci, Beijing 100094, Peoples R China
[3] Chinese Acad Agr Sci, Biotechnol Res Inst, Beijing 100081, Peoples R China
关键词
Na+; H+ antiporter; K2-NhaD; Transgenic cotton; Drought; Salt; STRESS TOLERANCE; TRANSCRIPTION FACTOR; SALINITY TOLERANCE; GENE; PLANTS; MECHANISM; PROLINE; GROWTH; TRANSFORMATION; HOMEOSTASIS;
D O I
10.1007/s11103-020-00969-1
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Key message Overexpression of K2-NhaD in transgenic cotton resulted in phenotypes with strong salinity and drought tolerance in greenhouse and field experiments, increased expression of stress-related genes, and improved regulation of metabolic pathways, such as the SOS pathway. Drought and salinity are major abiotic stressors which negatively impact cotton yield under field conditions. Here, a plasma membrane Na+/H+ antiporter gene, K2-NhaD, was introduced into upland cotton R15 using an Agrobacterium tumefaciens-mediated transformation system. Homozygous transgenic lines K9, K17, and K22 were identified by PCR and glyphosate-resistance. TAIL-PCR confirmed that T-DNA carrying the K2-NhaD gene in transgenic lines K9, K17 and K22 was inserted into chromosome 3, 19 and 12 of the cotton genome, respectively. Overexpression of K2-NhaD in transgenic cotton plants grown in greenhouse conditions and subjected to drought and salinity stress resulted in significantly higher relative water content, chlorophyll, soluble sugar, proline levels, and SOD, CAT, and POD activity, relative to non-transgenic plants. The expression of stress-related genes was significantly upregulated, and this resulted in improved regulation of metabolic pathways, such as the salt overly sensitive pathway. K2-NhaD transgenic plants growing under field conditions displayed strong salinity and drought tolerance, especially at high levels of soil salinity and drought. Seed cotton yields in transgenic line were significantly higher than in wild-type plants. In conclusion, the data indicate that K2-NhaD transgenic lines have great potential for the production of stress-tolerant cotton under field conditions.
引用
收藏
页码:553 / 567
页数:15
相关论文
共 50 条
  • [11] Novel NhaC Na+/H+ antiporter in cyanobacteria contributes to key molecular processes for salt tolerance
    Waditee-Sirisattha, Rungaroon
    Kageyama, Hakuto
    PLANT MOLECULAR BIOLOGY, 2024, 114 (06)
  • [12] Potassium improves photosynthetic tolerance to and recovery from episodic drought stress in functional leaves of cotton (Gossypium hirsutum L.)
    Zahoor, Rizwan
    Zhao, Wenqing
    Dong, Haoran
    Snider, John L.
    Abid, Muhammad
    Iqbal, Babar
    Zhou, Zhiguo
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2017, 119 : 21 - 32
  • [13] The Vacuolar Na+/H+ Antiporter Gene SsNHX1 from the Halophyte Salsola soda Confers Salt Tolerance in Transgenic Alfalfa (Medicago sativa L.)
    Li, Wangfeng
    Wang, Deli
    Jin, Taicheng
    Chang, Qing
    Yin, Dongxu
    Xu, Shoumin
    Liu, Bao
    Liu, Lixia
    PLANT MOLECULAR BIOLOGY REPORTER, 2011, 29 (02) : 278 - 290
  • [14] Overexpression of HvNHX2, a vacuolar Na+/H+ antiporter gene from barley, improves salt tolerance in Arabidopsis thaliana
    Bayat, F.
    Shiran, B.
    Belyaev, D. V.
    AUSTRALIAN JOURNAL OF CROP SCIENCE, 2011, 5 (04) : 428 - 432
  • [15] Incorporation of Na+/H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.)
    Liu, Jianfeng
    Zhang, Shuling
    Dong, Lijun
    Chu, Jianzhou
    INDIAN JOURNAL OF BIOCHEMISTRY & BIOPHYSICS, 2014, 51 (01) : 58 - 65
  • [16] Hyperactive mutant of a wheat plasma membrane Na+/H+ antiporter improves the growth and salt tolerance of transgenic tobacco
    Zhou, Yang
    Lai, Zesen
    Yin, Xiaochang
    Yu, Shan
    Xu, Yuanyuan
    Wang, Xiaoxiao
    Cong, Xinli
    Luo, Yuehua
    Xu, Haixia
    Jiang, Xingyu
    PLANT SCIENCE, 2016, 253 : 176 - 186
  • [17] Potato plants bearing a vacuolar Na+/H+ antiporter HvNHX2 from barley are characterized by improved salt tolerance
    Bayat, F.
    Shiran, B.
    Belyaev, D. V.
    Yur'eva, N. O.
    Sobol'kova, G. I.
    Alizadeh, H.
    Khodambashi, M.
    Babakov, A. V.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2010, 57 (05) : 696 - 706
  • [18] Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato
    Bhaskaran, Shimna
    Savithramma, D. L.
    JOURNAL OF EXPERIMENTAL BOTANY, 2011, 62 (15) : 5561 - 5570
  • [19] Soil bacteria conferred a positive relationship and improved salt stress tolerance in transgenic pea (Pisum sativum L.) harboring Na+/H+ antiporter
    Ali, Zahid
    Ullah, Nasr
    Naseem, Saadia
    Inam-Ul-Haq, Muhammad
    Jacobsen, Hans Joerg
    TURKISH JOURNAL OF BOTANY, 2015, 39 (06) : 962 - +
  • [20] A Na+/H+ Antiporter Gene from Rosa multiflora (RmNHX2) Functions in Salt Tolerance via Modulating ROS Levels and Ion Homeostasis
    Luo, Haiyan
    Shen, Yuxiao
    Chen, Linmei
    Cui, Yongyi
    Luo, Ping
    HORTICULTURAE, 2023, 9 (03)