Analysis of local discontinuous Galerkin method for time-space fractional convection-diffusion equations

被引:18
作者
Ahmadinia, M. [1 ]
Safari, Z. [1 ]
Fouladi, S. [2 ]
机构
[1] Univ Qom, Dept Math, Fac Sci, Isfahan Old Rd, Qom, Iran
[2] Univ Shahrekord, Dept Math, Shahrekord, Iran
关键词
Local discontinuous Galerkin method; Finite difference method; Fractional partial differential equations; Stability; Error estimates; FINITE-ELEMENT-METHOD; PARTIAL-DIFFERENTIAL-EQUATIONS; NUMERICAL-METHODS; APPROXIMATION; CONVERGENCE; SUBDIFFUSION; STABILITY; SUPERCONVERGENCE; SCHEMES; TERM;
D O I
10.1007/s10543-018-0697-x
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper focuses on the time-space fractional convection-diffusion equations with time fractional derivative (of order a, 0 < a < 1) and space fractional derivative (of order ss, 1 < ss < 2). An approach based on a combination of local discontinuous Galerkin (in space) and finite difference methods (in time) is presented to solve the fractional convection-diffusion equations. The stability and convergence analysis of the method are given. Numerical results confirm the theory of the method for fractional convection-diffusion equations.
引用
收藏
页码:533 / 554
页数:22
相关论文
共 50 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]   A method based on the Jacobi tau approximation for solving multi-term time-space fractional partial differential equations [J].
Bhrawy, A. H. ;
Zaky, M. A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 281 :876-895
[3]   Numerical Solution of the Two-Sided Space-Time Fractional Telegraph Equation Via Chebyshev Tau Approximation [J].
Bhrawy, Ali H. ;
Zaky, Mahmoud A. ;
Tenreiro Machado, Jose A. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 174 (01) :321-341
[4]   Galerkin finite element method for two-dimensional Riesz space fractional diffusion equations [J].
Bu, Weiping ;
Tang, Yifa ;
Yang, Jiye .
JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 276 :26-38
[5]  
Castillo P, 2002, MATH COMPUT, V71, P455, DOI 10.1090/S0025-5718-01-01317-5
[6]   A multi-domain spectral method for time-fractional differential equations [J].
Chen, Feng ;
Xu, Qinwu ;
Hesthaven, Jan S. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 293 :157-172
[7]   Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids [J].
Cockburn, B ;
Kanschat, G ;
Perugia, I ;
Schötzau, D .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2001, 39 (01) :264-285
[8]   A hybridizable discontinuous Galerkin method for fractional diffusion problems [J].
Cockburn, Bernardo ;
Mustapha, Kassem .
NUMERISCHE MATHEMATIK, 2015, 130 (02) :293-314
[9]   LOCAL DISCONTINUOUS GALERKIN METHODS FOR FRACTIONAL DIFFUSION EQUATIONS [J].
Deng, W. H. ;
Hesthaven, J. S. .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2013, 47 (06) :1845-1864
[10]   Local discontinuous Galerkin methods for fractional ordinary differential equations [J].
Deng, Weihua ;
Hesthaven, Jan S. .
BIT NUMERICAL MATHEMATICS, 2015, 55 (04) :967-985