Differentiability properties of rotationally invariant functions

被引:8
作者
Silhavy, M [1 ]
机构
[1] AV CR, Math Inst, Prague 11567 1, Czech Republic
关键词
constitutive equations; elastic constants; isotropy;
D O I
10.1023/A:1007663001108
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Let f be a function on the set Lin of all tensors (= square matrices) on a vector space of arbitrary dimension. If f is rotationally invariant (with respect to the left and right multiplication by proper orthogonal tensors), it has a representation (f) over tilde through a symmetric even function of the signed singular values of the tensor argument A is an element of Lin. It is shown that f is of class C-r,r=0,1,...,infinity, if and only if (f) over tilde is of class C-r, and an inductive formula is given for the derivatives D-r f.
引用
收藏
页码:225 / 232
页数:8
相关论文
共 9 条
[1]   DIFFERENTIABILITY PROPERTIES OF SYMMETRIC AND ISOTROPIC FUNCTIONS [J].
BALL, JM .
DUKE MATHEMATICAL JOURNAL, 1984, 51 (03) :699-728
[2]  
BOWEN RM, 1970, ARCH RATION MECH AN, V38, P13
[3]  
BOWEN RM, 1971, ARCH RATION MECH AN, V40, P403
[4]  
CHADWICK P, 1971, ARCH RATION MECH AN, V44, P41
[5]  
CHADWICK P, 1971, ARCH RATION MECH AN, V44, P54
[6]   Characterization of convex isotropic functions [J].
Rosakis, P .
JOURNAL OF ELASTICITY, 1997, 49 (03) :257-267
[7]   Differentiability properties of isotropic functions [J].
Silhavy, M .
DUKE MATHEMATICAL JOURNAL, 2000, 104 (03) :367-373
[8]  
Silhavy M, 1999, APPLIED NONLINEAR ANALYSIS, P513
[9]  
SYLVESTER J, 1985, DUKE MATH J, V52, P475, DOI 10.1215/S0012-7094-85-05223-8