Dynamic MRI reconstruction with end-to-end motion-guided network

被引:32
作者
Huang, Qiaoying [1 ]
Xian, Yikun [1 ]
Yang, Dong [2 ]
Qu, Hui [1 ]
Yi, Jingru [1 ]
Wu, Pengxiang [1 ]
Metaxas, Dimitris N. [1 ]
机构
[1] Rutgers State Univ, Dept Comp Sci, Piscataway, NJ 08854 USA
[2] NVIDIA, Bethesda, MD 20814 USA
基金
美国国家卫生研究院;
关键词
Dynamic MRI reconstruction; Motion estimation; Motion compensation; FOCUSS;
D O I
10.1016/j.media.2020.101901
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Temporal correlation in dynamic magnetic resonance imaging (MRI), such as cardiac MRI, is informative and important to understand motion mechanisms of body regions. Modeling such information into the MRI reconstruction process produces temporally coherent image sequence and reduces imaging artifacts and blurring. However, existing deep learning based approaches neglect motion information during the reconstruction procedure, while traditional motion-guided methods are hindered by heuristic parameter tuning and long inference time. We propose a novel dynamic MRI reconstruction approach called MODRN and an end-to-end improved version called MODRN(e2e), both of which enhance the reconstruction quality by infusing motion information into the modeling process with deep neural networks. The central idea is to decompose the motion-guided optimization problem of dynamic MRI reconstruction into three components: Dynamic Reconstruction Network, Motion Estimation and Motion Compensation. Extensive experiments have demonstrated the effectiveness of our proposed approach compared to other state-ofthe-art approaches. (c) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:13
相关论文
共 43 条
[1]  
[Anonymous], 2017, LECT NOTES COMPUT SC, DOI DOI 10.1007/978-3-319-66709-6_17
[2]  
Ballas N., 2015, ICLR
[3]  
Bao W., 2018, ARXIV PREPRINT ARXIV
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]   Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation [J].
Caballero, Jose ;
Ledig, Christian ;
Aitken, Andrew ;
Acosta, Alejandro ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2848-2857
[6]   Accelerated Motion Corrected Three-Dimensional Abdominal MRI Using Total Variation Regularized SENSE Reconstruction [J].
Cruz, Gastao ;
Atkinson, David ;
Buerger, Christian ;
Schaeffter, Tobias ;
Prieto, Claudia .
MAGNETIC RESONANCE IN MEDICINE, 2016, 75 (04) :1484-1498
[7]   Learning a variational network for reconstruction of accelerated MRI data [J].
Hammernik, Kerstin ;
Klatzer, Teresa ;
Kobler, Erich ;
Recht, Michael P. ;
Sodickson, Daniel K. ;
Pock, Thomas ;
Knoll, Florian .
MAGNETIC RESONANCE IN MEDICINE, 2018, 79 (06) :3055-3071
[8]   DETERMINING OPTICAL-FLOW [J].
HORN, BKP ;
SCHUNCK, BG .
ARTIFICIAL INTELLIGENCE, 1981, 17 (1-3) :185-203
[9]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[10]  
Huang QY, 2019, PR MACH LEARN RES, V102, P275