Exact Formula and Improved Bounds for General Sum-Connectivity Index of Graph-Operations

被引:19
作者
Ahmad, Maqsood [1 ,2 ]
Saeed, Muhammad [1 ]
Javaid, Muhammad [1 ]
Hussain, Muhammad [2 ]
机构
[1] Univ Management & Technol, Sch Sci, Dept Math, Lahore 54770, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
来源
IEEE ACCESS | 2019年 / 7卷
关键词
Molecular graphs; topological indices; Cartesian product; total graph; F-sum graphs; ZAGREB INDEXES; TOPOLOGICAL INDEXES; UNICYCLIC GRAPHS;
D O I
10.1109/ACCESS.2019.2953338
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
For a molecular graph Gamma, the general sum-connectivity index is defined as chi(beta) (Gamma) = Sigma(vw is an element of E(Gamma))[d(Gamma) (v) + d(Gamma) (w)](beta); where beta is an element of R and d(Gamma) (v) denotes the degree of the vertex v in the molecular graph Gamma: The problem of finding best possible upper and lower bound for certain topological index is of fundamental nature in extremal graph theory. Akhtar and Imran [J. Inequal. Appl. (2016) 241] obtained the sharp bounds of general sum-connectivity index for four graph operations (F-sum graphs) introduced by Eliasi and Taeri [Discrete Appl. Math. 157: 794-803, 2009)]. In this paper, for beta is an element of N; we figured out and improved the sharp bounds of the general sum-connectivity index for F-sum graphs, where F is an element of {R, Q, T}. Several examples are presented to elaborate and compare the results of improved bounds with existing sharp bounds. In addition, we obtained exact formula of general sum-connectivity index for F-sum graphs, when F = S.
引用
收藏
页码:167290 / 167299
页数:10
相关论文
共 36 条
[21]  
Li XL, 2005, MATCH-COMMUN MATH CO, V54, P195
[22]   Computing First General Zagreb Index of Operations on Graphs [J].
Liu, Jia-Bao ;
Javed, Saira ;
Javaid, Muhammad ;
Shabbir, Khurram .
IEEE ACCESS, 2019, 7 :47494-47502
[23]  
Liu MH, 2010, AUSTRALAS J COMB, V47, P285
[24]   Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons [J].
Lucic, Bono ;
Trinajstic, Nenad ;
Zhou, Bo .
CHEMICAL PHYSICS LETTERS, 2009, 475 (1-3) :146-148
[25]   Generalised topological indices: Optimisation methodology and physico-chemical interpretation [J].
Matamala, AR ;
Estrada, E .
CHEMICAL PHYSICS LETTERS, 2005, 410 (4-6) :343-347
[26]  
Nikolic S, 2003, CROAT CHEM ACTA, V76, P113
[27]  
Ramane HS, 2017, AKCE INT J GRAPHS CO, V14, P92, DOI 10.1016/j.akcej.2017.01.002
[28]   CHARACTERIZATION OF MOLECULAR BRANCHING [J].
RANDIC, M .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1975, 97 (23) :6609-6615
[29]   On topological indices, boiling points, and cycloalkanes [J].
Rücker, G ;
Rücker, C .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 1999, 39 (05) :788-802
[30]  
Tache RM, 2014, MATCH-COMMUN MATH CO, V72, P761