Sharp Inviscid Limit Results under Navier Type Boundary Conditions. An Lp Theory

被引:112
作者
da Veiga, H. Beirao [1 ]
Crispo, F. [1 ]
机构
[1] Univ Pisa, Dipartimento Matemat Applicata U Dini, I-56127 Pisa, Italy
关键词
Navier-Stokes equations; inviscid limit; slip boundary conditions; VANISHING VISCOSITY LIMIT; STOKES EQUATIONS; INCOMPRESSIBLE FLUID; EULER EQUATIONS; WELL-POSEDNESS; PERTURBATION-THEORY; FLOW; EXISTENCE; REGULARITY; UNIQUENESS;
D O I
10.1007/s00021-009-0295-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the evolutionary Navier-Stokes equations with a Navier slip-type boundary condition, and study the convergence of the solutions, as the viscosity goes to zero, to the solution of the Euler equations under the zero-flux boundary condition. We obtain quite sharp results in the 2-D and 3-D cases. However, in the 3-D case, we need to assume that the boundary is flat.
引用
收藏
页码:397 / 411
页数:15
相关论文
共 41 条
[1]  
[Anonymous], SPRINGER TRACTS NATU
[2]  
[Anonymous], 1969, QUELQUES METHODES RE
[3]   Regularity for the Navier-Stokes equations with slip boundary condition [J].
Bae, Hyeong-Ohk ;
Jin, Bum Ja .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (07) :2439-2443
[4]   EXISTENCE AND UNIQUENESS OF SOLUTION TO BIDIMENSIONAL EULER EQUATION [J].
BARDOS, C .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1972, 40 (03) :769-790
[5]  
BEGUE C, 1988, PITMAN RES NOTES MAT, V181
[6]  
Beirao da Veiga H., 2007, Port. Math. (N.S.), V64, P377
[7]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[8]   On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions [J].
Clopeau, T ;
Mikelic, A ;
Robert, R .
NONLINEARITY, 1998, 11 (06) :1625-1636
[9]  
Constantin P, 1996, INDIANA U MATH J, V45, P67
[10]   INVISCID LIMIT FOR VORTEX PATCHES [J].
CONSTANTIN, P ;
WU, JH .
NONLINEARITY, 1995, 8 (05) :735-742