Co-doped Li4Ti5O12 nanosheets with enhanced rate performance for lithium-ion batteries

被引:61
作者
Liang, Qiu [1 ,2 ,3 ]
Cao, Ning [1 ,2 ]
Song, Zhonghai [1 ,2 ]
Gao, Xuejiao [1 ,2 ]
Hou, Lina [1 ,2 ]
Guo, Tirong [1 ,2 ]
Qin, Xue [1 ,2 ]
机构
[1] Tianjin Univ, Sch Sci, Dept Chem, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Tianjin Univ, Tianjin Key Lab Mol Optoelect Sci, Tianjin 300072, Peoples R China
关键词
Co2+-doped Li4Ti5O12; High rate performance; Good electrochemical reversibility; Lithium ion batteries; HIGH-RATE CAPABILITY; ANODE MATERIAL; ELECTROCHEMICAL PERFORMANCE; HYDROTHERMAL SYNTHESIS; COMPOSITE; CONDUCTIVITY; INSERTION; TITANATE; BEHAVIOR; STORAGE;
D O I
10.1016/j.electacta.2017.08.121
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Co2+-doped Li4Ti5O12 (LTO) in the form of Li4Ti5-xCoxO12 (x = 0, 0.10, 0.15, 0.20) is prepared using a facile hydrothermal method. The doping of Co2+ leads to a decrease of the charge transfer resistance and improvement of the lithium ion diffusion coefficient. The as-prepared samples, Li4Ti5-xCoxO12 (x = 0.15) exhibits the best cycling stability and rate capability as anode material for lithium ion batteries, which delivers the initial specific capacity of 168.3,163,159,156.4,145.9,140.4,130.9 and 112.6 mAh g(-1) at 1, 2, 5, 10, 15, 20, 30 and 50C (1C = 175 mAh g(-1)) rate in the voltage range of 1.0-2.5 V respectively, and a discharge capacity of 109.3 mAh g(-1) after 1000 cycles at 50C. In addition, it keeps a discharge capacity of 150.8 mAh g(-1) (95.1% retention) at 5C even after 3000 cycles. Therefore, Co2+ doping technique provides an effective approach to improve electrochemical performances of LTO. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:407 / 414
页数:8
相关论文
共 54 条
[1]  
[Anonymous], 2012, ANGEW CHEM-GER EDIT, DOI DOI 10.1002/ANGE.201106998
[2]  
Apostolova R. D., 2014, ECS Transactions, V63, P3, DOI 10.1149/06301.0003ecst
[3]   All oxide solid-state lithium-ion cells [J].
Brousse, T ;
Fragnaud, P ;
Marchand, R ;
Schleich, DM ;
Bohnke, O ;
West, K .
JOURNAL OF POWER SOURCES, 1997, 68 (02) :412-415
[4]   A novel method to enhance rate performance of an Al-doped Li4Ti5O12 electrode by post-synthesis treatment in liquid formaldehyde at room temperature [J].
Cai, Rui ;
Jiang, Simin ;
Yu, Xing ;
Zhao, Bote ;
Wang, Huanting ;
Shao, Zongping .
JOURNAL OF MATERIALS CHEMISTRY, 2012, 22 (16) :8013-8021
[5]   Two-dimensional dysprosium-modified bamboo-slip-like lithium titanate with high-rate capability and long cycle life for lithium-ion batteries [J].
Cai, Yanjun ;
Huang, Yudai ;
Jia, Wei ;
Zhang, Yue ;
Wang, Xingchao ;
Guo, Yong ;
Jia, Dianzeng ;
Pang, Weikong ;
Guo, Zaiping ;
Wang, Lishi .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (45) :17782-17790
[6]   Synthesis of sawtooth-like Li4Ti5O12 nanosheets as anode materials for Li-ion batteries [J].
Chen, Jizhang ;
Yang, Li ;
Fang, Shaohua ;
Tang, Yufeng .
ELECTROCHIMICA ACTA, 2010, 55 (22) :6596-6600
[7]   Capacity Fade Mechanism of Li4Ti5O12 Nanosheet Anode [J].
Chiu, Hsien-Chieh ;
Lu, Xia ;
Zhou, Jigang ;
Gu, Lin ;
Reid, Joel ;
Gauvin, Raynald ;
Zaghib, Karim ;
Demopoulos, George P. .
ADVANCED ENERGY MATERIALS, 2017, 7 (05)
[8]   Br-Doped Li4Ti5O12 and Composite TiO2 Anodes for Li-ion Batteries: Synchrotron X-Ray and in situ Neutron Diffraction Studies [J].
Du, Guodong ;
Sharma, Neeraj ;
Peterson, Vanessa K. ;
Kimpton, Justin A. ;
Jia, Dianzeng ;
Guo, Zaiping .
ADVANCED FUNCTIONAL MATERIALS, 2011, 21 (20) :3990-3997
[9]   SPINEL ANODES FOR LITHIUM-ION BATTERIES [J].
FERG, E ;
GUMMOW, RJ ;
DEKOCK, A ;
THACKERAY, MM .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1994, 141 (11) :L147-L150
[10]   Synthesis of novel nitrogen-doped lithium titanate with ultra-high rate capability using melamine as a solid nitrogen source [J].
Guo, Min ;
Wang, Suqing ;
Ding, Liang-Xin ;
Zheng, Long ;
Wang, Haihui .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (20) :10753-10759