Exponential convergence for the linear homogeneous Boltzmann equation for hard potentials

被引:0
作者
Sun, Baoyan [1 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing 210093, Jiangsu, Peoples R China
关键词
Boltzmann equation; Hard potentials; Polynomial weight; Spectral gap; Dissipativity; Exponential rate; FOKKER-PLANCK EQUATION; LANDAU EQUATION; ANGULAR CUTOFF; PARTICLE BATH; SPECTRAL GAP; EQUILIBRIUM; STABILITY; OPERATORS; TREND; HYPOCOERCIVITY;
D O I
10.1016/j.amc.2018.07.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the asymptotic behavior of solutions to the linear spatially homogeneous Boltzmann equation for hard potentials without angular cutoff. We obtain an optimal rate of exponential convergence towards equilibrium in a L-1 -space with a polynomial weight. Our strategy is taking advantage of a spectral gap estimate in the Hilbert space L-2(mu(-1/2) ) and a quantitative spectral mapping theorem developed by Gualdani et al. Boltzmann equation (2017). Hard potentials (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 737
页数:11
相关论文
共 33 条
  • [1] Baranger C, 2005, REV MAT IBEROAM, V21, P819
  • [2] Entropy dissipation estimates for the linear Boltzmann operator
    Bisi, Marzia
    Canizo, Jose A.
    Lods, Bertrand
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (04) : 1028 - 1069
  • [3] UNIQUENESS IN THE WEAKLY INELASTIC REGIME OF THE EQUILIBRIUM STATE TO THE BOLTZMANN EQUATION DRIVEN BY A PARTICLE BATH
    Bisi, Marzia
    Canizo, Jose A.
    Lods, Bertrand
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (06) : 2640 - 2674
  • [4] On the rate of convergence to equilibrium for the linear Boltzmann equation with soft potentials
    Canizo, Jose A.
    Einav, Amit
    Lods, Bertrand
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 462 (01) : 801 - 839
  • [5] Exponential trend to equilibrium for the inelastic Boltzmann equation driven by a particle bath
    Canizo, Jose A.
    Lods, Bertrand
    [J]. NONLINEARITY, 2016, 29 (05) : 1687 - 1715
  • [6] Carrapatoso K., 2017, ANN PDE, V3, P65
  • [7] Cauchy Problem and Exponential Stability for the Inhomogeneous Landau Equation
    Carrapatoso, Kleber
    Tristani, Isabelle
    Wu, Kung-Chien
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (01) : 363 - 418
  • [8] Exponential convergence to equilibrium for the homogeneous Landau equation with hard potentials
    Carrapatoso, Kleber
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (07): : 777 - 805
  • [9] On the rate of convergence to equilibrium for the homogeneous Landau equation with soft potentials
    Carrapatoso, Kleber
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2015, 104 (02): : 276 - 310
  • [10] On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation
    Desvillettes, L
    Villani, C
    [J]. INVENTIONES MATHEMATICAE, 2005, 159 (02) : 245 - 316