Cross validation of ridge regression estimator in autocorrelated linear regression models

被引:4
作者
Acar, T. Sokut [1 ]
Ozkale, M. R. [2 ]
机构
[1] Canakkale Onsekiz Mart Univ, Fac Arts & Sci, Dept Stat, Canakkale, Turkey
[2] Cukurova Univ, Fac Sci & Letters, Dept Stat, Adana, Turkey
关键词
Autocorrelation; ridge regression; multicollinearity; ordinary cross validation; generalized cross validation; conceptual prediction; PERFORMANCE; PREDICTION; SIMULATION; ERRORS;
D O I
10.1080/00949655.2015.1112392
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we investigated the cross validation measures, namely OCV, GCV and Cp under the linear regression models when the error structure is autocorrelated and regressor data are correlated. The best performed ridge regression estimator is obtained by getting the optimal ridge parameter so as to minimize these measures. A Monte Carlo simulation study is given to see how the optimal ridge parameter is affected by autocorrelation and the strength of multicollinearity.
引用
收藏
页码:2429 / 2440
页数:12
相关论文
共 19 条