Numerical Investigation to the Effect of Initial Guess for Phase-Field Models

被引:5
作者
Yoon, Sungha [1 ]
Wang, Jian [2 ]
Lee, Chaeyoung [1 ]
Yang, Junxiang [1 ]
Park, Jintae [1 ]
Kim, Hyundong [1 ]
Kim, Junseok [1 ]
机构
[1] Korea Univ, Dept Math, Seoul 02841, South Korea
[2] Nanjing Univ Informat Sci & Technol, Sch Math & Stat, Nanjing 210044, Peoples R China
基金
新加坡国家研究基金会;
关键词
Allen-Cahn equation; Cahn-Hilliard equation; phase-field model; level set function; ELASTIC BENDING ENERGY; CAHN-HILLIARD EQUATION; TIME-STEPPING STRATEGY; RUNGE-KUTTA METHODS; ALLEN-CAHN; SPINODAL DECOMPOSITION; STABLE SCHEMES; SIMULATION; EFFICIENT; ACCURATE;
D O I
10.4208/eajam.200820.071220
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The construction of relevant initial conditions in the phase-field models for interfacial problems is discussed. If the model is supposed to have a local equilibrium at the interface, it must be based on a local distance function. However, since for the Cartesian coordinates non-uniform boundaries occur, the initial conditions have to be corrected in order to match the actual phenomena. We discuss the volume correction method, image initialisation, non-overlapping multi component concentration, etc. The methods presented can be used in the initial guess constructions for various phase-field models.
引用
收藏
页码:618 / 646
页数:29
相关论文
共 62 条
  • [1] A reduced fracture model for two-phase flow with different rock types
    Ahmed, Elyes
    Jaffre, Jerome
    Roberts, Jean E.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 137 : 49 - 70
  • [2] MICROSCOPIC THEORY FOR ANTIPHASE BOUNDARY MOTION AND ITS APPLICATION TO ANTIPHASE DOMAIN COARSENING
    ALLEN, SM
    CAHN, JW
    [J]. ACTA METALLURGICA, 1979, 27 (06): : 1085 - 1095
  • [3] A phase-field method for the direct simulation of two-phase flows in pore-scale media using a non-equilibrium wetting boundary condition
    Alpak, Faruk O.
    Riviere, Beatrice
    Frank, Florian
    [J]. COMPUTATIONAL GEOSCIENCES, 2016, 20 (05) : 881 - 908
  • [4] PRECONDITIONING FOR VECTOR-VALUED CAHN-HILLIARD EQUATIONS
    Bosch, Jessica
    Stoll, Martin
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (05) : S216 - S243
  • [5] Brkic A.L., 2018, LET NOTES ELECT ENG, P229
  • [6] SHEARLET-BASED REGULARIZED RECONSTRUCTION IN REGION-OF-INTEREST COMPUTED TOMOGRAPHY
    Bubba, T. A.
    Labate, D.
    Zanghirati, G.
    Bonettini, S.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (04)
  • [7] ON SPINODAL DECOMPOSITION
    CAHN, JW
    [J]. ACTA METALLURGICA, 1961, 9 (09): : 795 - 801
  • [8] SPINODAL DECOMPOSITION - REPRISE
    CAHN, JW
    HILLIARD, JE
    [J]. ACTA METALLURGICA, 1971, 19 (02): : 151 - +
  • [9] PERIODIC TRAVELING-WAVE SOLUTIONS TO THE WHITHAM EQUATION
    Casey, Kendall F.
    [J]. MATHEMATICAL MODELLING OF NATURAL PHENOMENA, 2018, 13 (02)
  • [10] A comparative study of local and nonlocal Allen-Cahn equations with mass conservation
    Chai, Zhenhua
    Sun, Dongke
    Wang, Huili
    Shi, Baochang
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 122 : 631 - 642