Three types of Darboux transformation and general soliton solutions for the space-shifted nonlocal PT symmetric nonlinear Schrodinger equation

被引:56
作者
Wang, Xin [1 ]
Wei, Jiao [2 ]
机构
[1] Zhongyuan Univ Technol, Coll Sci, Zhengzhou 450007, Peoples R China
[2] Zhengzhou Univ, Sch Math & Stat, 100 Kexue Rd, Zhengzhou 450001, Henan, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlocal NLS equation; Darboux transformation; Soliton solution;
D O I
10.1016/j.aml.2022.107998
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under investigation is the space-shifted nonlocal PT symmetric nonlinear Schrodinger (NLS) equation, which is a novel nonlocal reduction of the classical AKNS system proposed by Ablowitz and Musslimani (2021). We construct three types of Darboux transformation with the help of the symmetry conditions of the linear matrix spectral problem. Several kinds of analytical solutions such as the periodic, breather-like and bounded soliton solutions under the zero background are derived from three kinds of spectral configurations on the complex plane. Dynamics of these solutions to the space-shifted nonlocal PT symmetric NLS equation are shown. (C) 2022 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 17 条
  • [1] Integrable space-time shifted nonlocal nonlinear equations
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICS LETTERS A, 2021, 409
  • [2] Integrable Nonlocal Nonlinear Schrodinger Equation
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. PHYSICAL REVIEW LETTERS, 2013, 110 (06)
  • [3] General soliton solution to a nonlocal nonlinear Schrodinger equation with zero and nonzero boundary conditions
    Feng, Bao-Feng
    Luo, Xu-Dan
    Ablowitz, Mark J.
    Musslimani, Ziad H.
    [J]. NONLINEARITY, 2018, 31 (12) : 5385 - 5409
  • [4] Towards a gauge-equivalent magnetic structure of the nonlocal nonlinear Schrodinger equation
    Gadzhimuradov, T. A.
    Agalarov, A. M.
    [J]. PHYSICAL REVIEW A, 2016, 93 (06)
  • [5] Soliton solutions of the shifted nonlocal NLS and MKdV equations
    Gurses, Metin
    Pekcan, Asli
    [J]. PHYSICS LETTERS A, 2022, 422
  • [6] Liu S.M., 2021, ARXIV210704183
  • [7] Alice-Bob systems, (P)over-cap-(T)over-cap-(C)over-cap symmetry invariant and symmetry breaking soliton solutions
    Lou, S. Y.
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (08)
  • [8] Binary Darboux transformation for the Sasa-Satsuma equation
    Nimmo, Jonathan J. C.
    Yilmaz, Halis
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2015, 48 (42)
  • [9] Rogue waves of the nonlocal Davey-Stewartson I equation
    Rao, Jiguang
    Zhang, Yongshuai
    Fokas, Athanassios S.
    He, Jingsong
    [J]. NONLINEARITY, 2018, 31 (09) : 4090 - 4107
  • [10] Reverse Space-Time Nonlocal Sasa-Satsuma Equation and Its Solutions
    Song, Caiqin
    Xiao, Dongmei
    Zhu, Zuo-nong
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2017, 86 (05)