Research Progress on Rolling Circle Amplification (RCA)-Based Biomedical Sensing

被引:71
作者
Gu, Lide [1 ]
Yan, Wanli [1 ]
Liu, Le [1 ]
Wang, Shujun [2 ,3 ]
Zhang, Xu [3 ,4 ]
Lyu, Mingsheng [1 ,2 ,3 ]
机构
[1] Huahai Inst Technol, Coll Marine Life & Fisheries, Lianyungang 222005, Peoples R China
[2] Marine Resources Dev Inst Jiangsu, Lianyungang 222005, Peoples R China
[3] Huaihai Inst Technol, Co Innovat Ctr Jiangsu Marine Bioind Technol, Lianyungang 222005, Peoples R China
[4] Cape Breton Univ, Verschuren Ctr Sustainabil Energy & Environm, Sydney, NS B1P 6L2, Canada
基金
中国国家自然科学基金;
关键词
rolling circle amplification (RCA); biosensor; clinical diagnostics; cancer; CASCADE SIGNAL AMPLIFICATION; DNA DETECTION; IN-SITU; TRANSCRIPTION FACTORS; NUCLEIC-ACID; NUCLEOTIDE POLYMORPHISMS; AMPLIFIED SYNTHESIS; TUMOR-MARKERS; PROTEIN; APTAMER;
D O I
10.3390/ph11020035
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Enhancing the limit of detection (LOD) is significant for crucial diseases. Cancer development could take more than 10 years, from one mutant cell to a visible tumor. Early diagnosis facilitates more effective treatment and leads to higher survival rate for cancer patients. Rolling circle amplification (RCA) is a simple and efficient isothermal enzymatic process that utilizes nuclease to generate long single stranded DNA (ssDNA) or RNA. The functional nucleic acid unit (aptamer, DNAzyme) could be replicated hundreds of times in a short period, and a lower LOD could be achieved if those units are combined with an enzymatic reaction, Surface Plasmon Resonance, electrochemical, or fluorescence detection, and other different kinds of biosensor. Multifarious RCA-based platforms have been developed to detect a variety of targets including DNA, RNA, SNP, proteins, pathogens, cytokines, micromolecules, and diseased cells. In this review, improvements in using the RCA technique for medical biosensors and biomedical applications were summarized and future trends in related research fields described.
引用
收藏
页数:19
相关论文
共 118 条
[11]   Interphase chromosome arrangement in Arabidopsis thaliana is similar in differentiated and meristematic tissues and shows a transient mirror symmetry after nuclear division [J].
Berr, Alexandre ;
Schubert, Ingo .
GENETICS, 2007, 176 (02) :853-863
[12]   Periodic DNA nanotemplates synthesized by rolling circle amplification [J].
Beyer, S ;
Nickels, P ;
Simmel, FC .
NANO LETTERS, 2005, 5 (04) :719-722
[13]   Target-induced self-assembly of DNA nanomachine on magnetic particle for multi-amplified biosensing of nucleic acid, protein, and cancer cell [J].
Bi, Sai ;
Cui, Yangyang ;
Dong, Ying ;
Zhang, Ningbo .
BIOSENSORS & BIOELECTRONICS, 2014, 53 :207-213
[14]   Exonuclease-assisted cascaded recycling amplification for label-free detection of DNA [J].
Bi, Sai ;
Li, Li ;
Cui, Yangyang .
CHEMICAL COMMUNICATIONS, 2012, 48 (07) :1018-1020
[15]  
Blundred RM, 2011, EXPERT REV CLIN IMMU, V7, P169, DOI [10.1586/ECI.10.93, 10.1586/eci.10.93]
[16]   Oligonucleotide microarrays in microbial diagnostics [J].
Bodrossy, L ;
Sessitsch, A .
CURRENT OPINION IN MICROBIOLOGY, 2004, 7 (03) :245-254
[17]  
BURNETTE WN, 1981, ANAL BIOCHEM, V112, P195, DOI 10.1016/0003-2697(81)90281-5
[18]   Diagnosing viruses by the rolling circle amplified synthesis of DNAzymes [J].
Cheglakov, Zoya ;
Weizmann, Yossi ;
Basnar, Bernhard ;
Willner, Itamar .
ORGANIC & BIOMOLECULAR CHEMISTRY, 2007, 5 (02) :223-225
[19]   Real-time quantification of microRNAs by stem-loop RT-PCR [J].
Chen, CF ;
Ridzon, DA ;
Broomer, AJ ;
Zhou, ZH ;
Lee, DH ;
Nguyen, JT ;
Barbisin, M ;
Xu, NL ;
Mahuvakar, VR ;
Andersen, MR ;
Lao, KQ ;
Livak, KJ ;
Guegler, KJ .
NUCLEIC ACIDS RESEARCH, 2005, 33 (20) :e179.1-e179.9
[20]   Thermal Stability of Phage Peptide Probes vs. Aptamer for Salmonella Detection on Magnetoelastic Biosensors Platform [J].
Chen, I. -H. ;
Horikawa, S. ;
Du, S. ;
Liu, Y. ;
Wikle, H. C. ;
Barbaree, J. M. ;
Chin, B. A. .
CHEMICAL SENSORS 12: CHEMICAL AND BIOLOGICAL SENSORS AND ANALYTICAL SYSTEMS, 2016, 75 (16) :165-173