The photosynthetic response of C3 and C4 bioenergy grass species to fluctuating light

被引:20
|
作者
Lee, Moon-Sub [1 ]
Boyd, Ryan A. [1 ]
Ort, Donald R. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL USA
[2] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Crop Sci, Urbana, IL USA
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2022年 / 14卷 / 01期
关键词
bioenergy grass; C-3; photosynthesis; C-4; fluctuating light; NAD-ME; NADP-ME; PEPCK; photosynthetic efficiency; NATURAL GENETIC-VARIATION; C4; PHOTOSYNTHESIS; BUNDLE SHEATH; CO2; BURST; INDUCTION; EXCHANGE; SUNFLECKS; PLANTS; REQUIREMENT; TEMPERATURE;
D O I
10.1111/gcbb.12899
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Bioenergy grass species are a renewable energy source, but their productivity has not been fully realized. Improving photosynthetic efficiency has been proposed as a mechanism to increase the productivity of bioenergy grass species. Fluctuating light, experienced by all field grown crops, is known to reduce photosynthetic efficiency. This experiment aimed to evaluate the photosynthetic performance of both C-3 and C-4 bioenergy grass species under steady state and fluctuating light conditions by examining leaf gas exchange. The fluctuating light regime used here decreased carbon assimilation across all species when compared to expected steady state values. Overall, C-4 species assimilated more carbon than C-3 species during the fluctuating light regime, with both photosynthetic types assimilating about 16% less carbon than expected based on steady state measurements. Little diversity was observed in response to fluctuating light among C-3 species, and photorespiration partially contributed to the rapid decreases in net photosynthetic rates during high to low light transitions. In C-4 species, differences among the four NADP-ME species were apparent. Diversity observed among C-4 species in this experiment provides evidence that photosynthetic efficiency in response to fluctuating light may be targeted to increase C-4 bioenergy grass productivity.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [21] The temperature response of C3 and C4 photosynthesis
    Sage, Rowan F.
    Kubien, David S.
    PLANT CELL AND ENVIRONMENT, 2007, 30 (09): : 1086 - 1106
  • [22] Can prescribed fires restore C4 grasslands invaded by a C3 woody species and a co-dominant C3 grass species?
    Ansley, R. James
    Boutton, Thomas W.
    Hollister, Emily B.
    ECOSPHERE, 2021, 12 (12):
  • [23] YIELD, PERSISTENCE AND DRY-MATTER DIGESTIBILITY OF SOME C3, C4 AND C3/C4 PANICUM SPECIES
    HILL, K
    WILSON, JR
    SHELTON, HM
    TROPICAL GRASSLANDS, 1989, 23 (04): : 240 - 249
  • [24] Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes
    Kubien, DS
    Sage, RF
    PLANT CELL AND ENVIRONMENT, 2004, 27 (07): : 907 - 916
  • [25] Root Functional Diversity of Native and Nonnative C3 and C4 Grass Species in Hawai'i
    Angelo, Courtney L.
    Pau, Stephanie
    PACIFIC SCIENCE, 2017, 71 (02) : 117 - 133
  • [26] EFFECTS OF NITROGEN NUTRITION ON PHOTOSYNTHESIS AND ASSOCIATED CHARACTERISTICS IN C3, C4 AND INTERMEDIATE GRASS SPECIES
    BOLTON, J
    BROWN, RH
    PLANT PHYSIOLOGY, 1978, 61 (04) : 38 - 38
  • [27] Drought limitation of photosynthesis differs between C3 and C4 grass species in a comparative experiment
    Taylor, S. H.
    Ripley, B. S.
    Woodward, F. I.
    Osborne, C. P.
    PLANT CELL AND ENVIRONMENT, 2011, 34 (01): : 65 - 75
  • [28] PLANT SPECIES INTERMEDIATE FOR C3, C4 PHOTOSYNTHESIS
    KENNEDY, RA
    LAETSCH, WM
    SCIENCE, 1974, 184 (4141) : 1087 - 1089
  • [29] Challenges and opportunities in the use of remote sensing for C3 and C4 grass species discrimination and mapping
    Adjorlolo, C.
    Mutanga, O.
    Cho, M. A.
    Ismail, R.
    AFRICAN JOURNAL OF RANGE & FORAGE SCIENCE, 2012, 29 (02) : 47 - 61
  • [30] PHOTOSYNTHESIS OF A C3 GRASS AND A C4 GRASS UNDER ELEVATED CO2
    NIE, D
    HE, H
    KIRKHAM, MB
    KANEMASU, ET
    PHOTOSYNTHETICA, 1992, 26 (02) : 189 - 198