The photosynthetic response of C3 and C4 bioenergy grass species to fluctuating light

被引:20
|
作者
Lee, Moon-Sub [1 ]
Boyd, Ryan A. [1 ]
Ort, Donald R. [1 ,2 ,3 ]
机构
[1] Univ Illinois, Carl R Woese Inst Genom Biol, Urbana, IL USA
[2] Univ Illinois, Dept Plant Biol, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Crop Sci, Urbana, IL USA
来源
GLOBAL CHANGE BIOLOGY BIOENERGY | 2022年 / 14卷 / 01期
关键词
bioenergy grass; C-3; photosynthesis; C-4; fluctuating light; NAD-ME; NADP-ME; PEPCK; photosynthetic efficiency; NATURAL GENETIC-VARIATION; C4; PHOTOSYNTHESIS; BUNDLE SHEATH; CO2; BURST; INDUCTION; EXCHANGE; SUNFLECKS; PLANTS; REQUIREMENT; TEMPERATURE;
D O I
10.1111/gcbb.12899
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Bioenergy grass species are a renewable energy source, but their productivity has not been fully realized. Improving photosynthetic efficiency has been proposed as a mechanism to increase the productivity of bioenergy grass species. Fluctuating light, experienced by all field grown crops, is known to reduce photosynthetic efficiency. This experiment aimed to evaluate the photosynthetic performance of both C-3 and C-4 bioenergy grass species under steady state and fluctuating light conditions by examining leaf gas exchange. The fluctuating light regime used here decreased carbon assimilation across all species when compared to expected steady state values. Overall, C-4 species assimilated more carbon than C-3 species during the fluctuating light regime, with both photosynthetic types assimilating about 16% less carbon than expected based on steady state measurements. Little diversity was observed in response to fluctuating light among C-3 species, and photorespiration partially contributed to the rapid decreases in net photosynthetic rates during high to low light transitions. In C-4 species, differences among the four NADP-ME species were apparent. Diversity observed among C-4 species in this experiment provides evidence that photosynthetic efficiency in response to fluctuating light may be targeted to increase C-4 bioenergy grass productivity.
引用
收藏
页码:37 / 53
页数:17
相关论文
共 50 条
  • [21] Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes
    Kubien, DS
    Sage, RF
    PLANT CELL AND ENVIRONMENT, 2004, 27 (07) : 907 - 916
  • [22] C4 plants use fluctuating light less efficiently than do C3 plants: a study of growth, photosynthesis and carbon isotope discrimination
    Kubasek, Jiri
    Urban, Otmar
    Santrucke, Jiri
    PHYSIOLOGIA PLANTARUM, 2013, 149 (04) : 528 - 539
  • [23] Unified representation of the C3, C4, and CAM photosynthetic pathways with the Photo3 model
    Hartzell, Samantha
    Bartlett, Mark S.
    Porporato, Amilcare
    ECOLOGICAL MODELLING, 2018, 384 : 173 - 187
  • [24] Useful rapid light-response curve of electron transport rate for estimations of photosynthetic capacity in C4 species
    Huang, Meng-Yuan
    Chen, Chung-Wei
    Wang, Ching-Wen
    Wong, Shau-Lian
    Weng, Jen-Hsien
    THEORETICAL AND EXPERIMENTAL PLANT PHYSIOLOGY, 2022, 34 (03) : 367 - 380
  • [25] Photorespiration connects C3 and C4 photosynthesis
    Braeutigam, Andrea
    Gowik, Udo
    JOURNAL OF EXPERIMENTAL BOTANY, 2016, 67 (10) : 2953 - 2962
  • [26] A scheme for C4 evolution derived from a comparative analysis of the closely related C3, C3–C4 intermediate, C4-like, and C4 species in the genus Flaveria
    Yuri N. Munekage
    Yukimi Y. Taniguchi
    Plant Molecular Biology, 2022, 110 : 445 - 454
  • [27] Evolutionary transition from C3 to C4 photosynthesis and the route to C4 rice
    Liu, Zheng
    Sun, Ning
    Yang, Shangjun
    Zhao, Yanhong
    Wang, Xiaoqin
    Hao, Xingyu
    Qiao, Zhijun
    BIOLOGIA, 2013, 68 (04) : 577 - 586
  • [28] CO2 availability influences hydraulic function of C3 and C4 grass leaves
    Taylor, Samuel H.
    Aspinwall, Michael J.
    Blackman, Chris J.
    Choat, Brendan
    Tissue, David T.
    Ghannoum, Oula
    JOURNAL OF EXPERIMENTAL BOTANY, 2018, 69 (10) : 2731 - 2741
  • [29] Investigating photosynthetic evolution and the feasibility of inducing C4 syndrome in C3 plants
    Mukundan, Nidhi S.
    Satyamoorthy, Kapaettu
    Babu, Vidhu Sankar
    PLANT BIOTECHNOLOGY REPORTS, 2024, 18 (04) : 449 - 463
  • [30] Ontogenetic derivation and cell differentiation in photosynthetic tissues of C3 and C4 Cyperaceae
    Soros, CL
    Dengler, NG
    AMERICAN JOURNAL OF BOTANY, 2001, 88 (06) : 992 - 1005