Kernels for products of Hilbert L-functions

被引:1
作者
Choie, YoungJu [1 ]
Zhang, Yichao [2 ,3 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Math, Pohang 790784, South Korea
[2] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Inst Adv Studies Math, Harbin 150001, Peoples R China
关键词
Hilbert modular form; Special L-values; Cusp form; Double Eisenstein series; Petersson inner product; Rankin-Cohen bracket; Kernel function; MODULAR-FORMS;
D O I
10.1007/s00209-019-02355-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study kernel functions of L-functions and products of L-functions of Hilbert cusp forms over real quadratic fields. This extends the results on elliptic modular forms in Diamantis and O'Sullivan (Math Ann 346(4):897-929, 2010, Algebra Number Theory 7(8):1883-1917, 2013).
引用
收藏
页码:87 / 99
页数:13
相关论文
共 50 条
  • [1] Kernels for products of Hilbert L-functions
    YoungJu Choie
    Yichao Zhang
    Mathematische Zeitschrift, 2020, 295 : 87 - 99
  • [2] Hilbert Poincare series and kernels for products of L-functions
    Zhang, Mingkuan
    Zhang, Yichao
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2025, 21 (03) : 515 - 530
  • [3] Kernels of L-functions of cusp forms
    Diamantis, Nikolaos
    O'Sullivan, Cormac
    MATHEMATISCHE ANNALEN, 2010, 346 (04) : 897 - 929
  • [4] Nonvanishing of Rankin–Selberg L-functions for Hilbert modular forms
    Sheng-Chi Liu
    Riad Masri
    The Ramanujan Journal, 2014, 34 : 227 - 236
  • [5] Elliptic curves, L-functions, and Hilbert's tenth problem
    Murty, M. Ram
    Pasten, Hector
    JOURNAL OF NUMBER THEORY, 2018, 182 : 1 - 18
  • [6] Simultaneous nonvanishing of products of L-functions associated to elliptic cusp forms
    Choie, YoungJu
    Kohnen, Winfried
    Zhang, Yichao
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 486 (02)
  • [7] Nonvanishing of Rankin-Selberg L-functions for Hilbert modular forms
    Liu, Sheng-Chi
    Masri, Riad
    RAMANUJAN JOURNAL, 2014, 34 (02) : 227 - 236
  • [8] TWISTED L-FUNCTIONS OVER NUMBER FIELDS AND HILBERT'S ELEVENTH PROBLEM
    Blomer, Valentin
    Harcos, Gergely
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2010, 20 (01) : 1 - 52
  • [9] Coincidence of L-functions
    Katayama, Yuta
    Kida, Masanari
    ACTA ARITHMETICA, 2022, : 369 - 385
  • [10] On summatory functions for automorphic L-functions
    O. M. Fomenko
    Journal of Mathematical Sciences, 2012, 184 (6) : 776 - 785