Micro-photoluminescence spectroscopy on heavily-doped layers of silicon solar cells

被引:27
作者
Nguyen, Hieu T. [1 ]
Yan, Di [1 ]
Wang, Fan [2 ]
Zheng, Peiting [1 ]
Han, Young [1 ]
Macdonald, Daniel [1 ]
机构
[1] Australian Natl Univ, Coll Engn & Comp Sci, Res Sch Engn, Canberra, ACT 2601, Australia
[2] Australian Natl Univ, Res Sch Phys & Engn, Dept Elect Mat Engn, Canberra, ACT 2601, Australia
来源
PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS | 2015年 / 9卷 / 04期
基金
澳大利亚研究理事会;
关键词
band gaps; crystals; silicon; doping; photoluminescence; solar cells; P-TYPE SILICON; CRYSTALLINE SILICON; BAND-GAP; RADIATIVE RECOMBINATION; TEMPERATURE-DEPENDENCE; LUMINESCENCE; COEFFICIENT; WAFERS;
D O I
10.1002/pssr.201510049
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We report and explain the photoluminescence spectra emitted from silicon solar cells with heavily-doped layers at the surface. A micro-photoluminescence spectroscopy system is employed to investigate the total spectrum emitted from both the heavily-doped layer and the silicon substrate with micron-scale spatial resolution. The two regions of the device give rise to separate photoluminescence peaks, due to band-gap narrowing effects in the highly-doped layer. Two key parameters, the absorption depth of the excitation wavelength, and the sample temperature, are shown to be critical to reveal the separate signatures from the two regions. Finally, this technique is applied to locally diffused and laser-doped regions on silicon solar cell pre-cursors, demonstrating the potential value of this micron-scale technique in studying and optimizing locally doped regions. (C) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:230 / 235
页数:6
相关论文
共 28 条
  • [1] HEAVILY DOPED SEMICONDUCTORS AND DEVICES
    ABRAM, RA
    REES, GJ
    WILSON, BLH
    [J]. ADVANCES IN PHYSICS, 1978, 27 (06) : 799 - 892
  • [2] Injection dependence of spontaneous radiative recombination in crystalline silicon: Experimental verification and theoretical analysis
    Altermatt, P. P.
    Geelhaar, F.
    Trupke, T.
    Dai, X.
    Neisser, A.
    Daub, E.
    [J]. APPLIED PHYSICS LETTERS, 2006, 88 (26)
  • [3] Evaluating Plasmonic Light Trapping With Photoluminescence
    Barugkin, Chog
    Wan, Yimao
    Macdonald, Daniel
    Catchpole, Kylie R.
    [J]. IEEE JOURNAL OF PHOTOVOLTAICS, 2013, 3 (04): : 1292 - 1297
  • [4] TEMPERATURE-DEPENDENCE OF BAND-GAP OF SILICON
    BLUDAU, W
    ONTON, A
    HEINKE, W
    [J]. JOURNAL OF APPLIED PHYSICS, 1974, 45 (04) : 1846 - 1848
  • [5] ULTRALOW VALUES OF THE ABSORPTION-COEFFICIENT OF SI OBTAINED FROM LUMINESCENCE
    DAUB, E
    WURFEL, P
    [J]. PHYSICAL REVIEW LETTERS, 1995, 74 (06) : 1020 - 1023
  • [6] Fast simulation code for heating, phase changes and dopant diffusion in silicon laser processing using the alternating direction explicit (ADE) method
    Fell, A.
    Willeke, G. P.
    [J]. APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 98 (02): : 435 - 440
  • [7] Fell A., 2010, THESIS FRAUNHOFER I
  • [8] ACCURATE DETERMINATION OF BANDGAP NARROWING IN HEAVILY-DOPED EPITAXIAL P-TYPE SILICON
    GHANNAM, MY
    MERTENS, RP
    [J]. MICROELECTRONIC ENGINEERING, 1992, 19 (1-4) : 691 - 694
  • [9] Separation of local bulk and surface recombination in crystalline silicon from luminescence reabsorption
    Giesecke, J. A.
    Kasemann, M.
    Schubert, M. C.
    Wuefel, P.
    Warta, W.
    [J]. PROGRESS IN PHOTOVOLTAICS, 2010, 18 (01): : 10 - 19
  • [10] Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients
    Green, Martin A.
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2008, 92 (11) : 1305 - 1310