On solvable Lie and Leibniz superalgebras with maximal codimension of nilradical

被引:6
作者
Camacho, L. M. [1 ]
Navarro, R. M. [2 ]
Omirov, B. A. [3 ]
机构
[1] Univ Seville, Dept Matemat Aplicada 1, Seville, Spain
[2] Univ Extremadura, Dept Matemat, Caceres, Spain
[3] Natl Univ Uzbekistan, Inst Math, Tashkent, Uzbekistan
关键词
Solvable Lie superalgebras; Solvable Leibniz superalgebras; Derivations; Nilpotent Lie superalgebras; Nilpotent Leibniz superalgebras; DIMENSION LESS; ALGEBRAS; CLASSIFICATION; NILPOTENT; DEFORMATIONS; VARIETIES;
D O I
10.1016/j.jalgebra.2021.10.029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Along this paper we show that under certain conditions the method for describing of solvable Lie and Leibniz algebras with maximal codimension of nilradical is also extensible to Lie and Leibniz superalgebras, respectively. In particular, we totally determine the solvable Lie and Leibniz superalgebras with maximal codimension of model filiform and model nilpotent nilradicals. Finally, it is established that the superderivations of the obtained superalgebras are inner. (C) 2021 The Authors. Published by Elsevier Inc.
引用
收藏
页码:500 / 522
页数:23
相关论文
共 26 条
[1]  
Abdurasulov K.K., 2019, PROC UZBEK ACAD SCI, V5, P3
[2]   On nilpotent and simple Leibniz algebras [J].
Albeverio, S ;
Ayupov, SA ;
Omirov, BA .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (01) :159-172
[3]   Varieties of nilpotent complex Leibniz algebras of dimension less than five# [J].
Albeverio, S ;
Omirov, BA ;
Rakhimov, IS .
COMMUNICATIONS IN ALGEBRA, 2005, 33 (05) :1575-1585
[4]   Cohomologically rigid solvable Lie algebras with a nilradical of arbitrary characteristic sequence [J].
Ancochea Bermudez, J. M. ;
Campoamor-Stursberg, R. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 488 :135-147
[5]   Classification of Lie algebras with naturally graded quasi-filiform nilradicals [J].
Ancochea Bermudez, J. M. ;
Campoamor-Stursberg, R. ;
Garcia Vergnolle, L. .
JOURNAL OF GEOMETRY AND PHYSICS, 2011, 61 (11) :2168-2186
[6]  
Ancochea Bermudez J.M., 2006, INT MATH FORUM, V1, P309, DOI [DOI 10.12988/IMF.2006.06028, DOI 10.12988/imf.2006.06028]
[7]   Some deformations of nilpotent Lie superalgebras [J].
Bordemann, M. ;
Gomez, J. R. ;
Khakimdjanov, Yu. ;
Navarro, R. M. .
JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (05) :1391-1403
[8]   Classification of orbit closures of 4-dimensional complex Lie algebras [J].
Burde, D ;
Steinhoff, C .
JOURNAL OF ALGEBRA, 1999, 214 (02) :729-739
[9]   Solvable Leibniz Algebras with Filiform Nilradical [J].
Camacho, L. M. ;
Omirov, B. A. ;
Masutova, K. K. .
BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2016, 39 (01) :283-303
[10]   Classification of solvable Leibniz algebras with naturally graded filiform nilradical [J].
Casas, J. M. ;
Ladra, M. ;
Omirov, B. A. ;
Karimjanov, I. A. .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2013, 438 (07) :2973-3000