An improved approximation algorithm for the minimum common integer partition problem

被引:0
|
作者
Lin, Guohui [1 ]
Tong, Weitian [2 ]
机构
[1] Univ Alberta, Dept Comp Sci, Edmonton, AB T6G 2E8, Canada
[2] Georgia Southern Univ, Dept Comp Sci, Statesboro, GA 30458 USA
基金
加拿大自然科学与工程研究理事会;
关键词
Approximation algorithm; Integer partition; Weighted set packing; Amortized analysis;
D O I
10.1016/j.ic.2021.104784
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a collection of multisets {X-1, X-2, . . . , Xk} (k >= 2) of positive integers, a multiset S is a common integer partition for them if S is an integer partition of every multiset X-i, 1 <= i <= k. The minimum common integer partition (k-MCIP) problem is defined as to find a CIP for {X-1, X-2, . . . , X-k} with the minimum cardinality. We present a 6/5-approximation algorithm for the 2-MCIP problem, improving the previous best algorithm of performance ratio 5/4 designed by Chen et al. in 2006. We then extend it to obtain an absolute 0.6k-approximation algorithm for k-MCIP when k is even (when k is odd, the approximation ratio is 0.6k + 0.4). (C) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] On the Minimum Common Integer Partition Problem
    Chen, Xin
    Liu, Lan
    Liu, Zheng
    Jiang, Tao
    ACM TRANSACTIONS ON ALGORITHMS, 2008, 5 (01)
  • [2] An improved approximation algorithm for the minimum 3-path partition problem
    Yong Chen
    Randy Goebel
    Guohui Lin
    Bing Su
    Yao Xu
    An Zhang
    Journal of Combinatorial Optimization, 2019, 38 : 150 - 164
  • [3] An improved approximation algorithm for the minimum 3-path partition problem
    Chen, Yong
    Goebel, Randy
    Lin, Guohui
    Su, Bing
    Xu, Yao
    Zhang, An
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (01) : 150 - 164
  • [4] A network flow approach to the minimum common integer partition problem
    Zhao, Wenbo
    Zhang, Peng
    Jiang, Tao
    THEORETICAL COMPUTER SCIENCE, 2006, 369 (1-3) : 456 - 462
  • [5] An Improved Approximation Algorithm for the Minimum Power Cover Problem with Submodular Penalty
    Dai, Han
    COMPUTATION, 2022, 10 (10)
  • [6] A local search 4/3-approximation algorithm for the minimum 3-path partition problem
    Yong Chen
    Randy Goebel
    Guohui Lin
    Longcheng Liu
    Bing Su
    Weitian Tong
    Yao Xu
    An Zhang
    Journal of Combinatorial Optimization, 2022, 44 : 3595 - 3610
  • [7] An Approximation Algorithm for the Minimum Vertex Cover Problem
    Chen, Jingrong
    Kou, Lei
    Cui, Xiaochuan
    GREEN INTELLIGENT TRANSPORTATION SYSTEM AND SAFETY, 2016, 138 : 180 - 185
  • [8] A local search 4/3-approximation algorithm for the minimum 3-path partition problem
    Chen, Yong
    Goebel, Randy
    Lin, Guohui
    Liu, Longcheng
    Su, Bing
    Tong, Weitian
    Xu, Yao
    Zhang, An
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2022, 44 (05) : 3595 - 3610
  • [9] AN IMPROVED APPROXIMATION ALGORITHM FOR THE k-PRIZE-COLLECTING MINIMUM POWER COVER PROBLEM
    Wang, Wencheng
    Cheng, Binhui
    Li, Jianglin
    Chen, Yinhua
    Zhang, Tongquan
    JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2024, 20 (04) : 1703 - 1718
  • [10] Improved approximation algorithms for the k-path partition problem
    Li, Shiming
    Yu, Wei
    Liu, Zhaohui
    JOURNAL OF GLOBAL OPTIMIZATION, 2024, 90 (04) : 983 - 1006