Singular Gierer-Meinhardt systems of elliptic boundary value problems

被引:19
作者
Kim, EH [1 ]
机构
[1] Calif State Univ Long Beach, Dept Math, Long Beach, CA 90840 USA
基金
美国国家科学基金会;
关键词
elliptic systems; singular; non-quasimonotone; Gierer-Meinhardt;
D O I
10.1016/j.jmaa.2004.10.039
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence results for singular Gierer-Meinhardt elliptic systems with zero Dirichlet boundary conditions. Gierer-Meinhardt systems are model problems for pattern formations of spatial tissue structures of morphogenesis. The mathematical difficulties are that the system becomes singular near the boundary and it is non-quasimonotone. We show the existence of positive solutions for the activator-inhibitor model with common sources. (c) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 10
页数:10
相关论文
共 20 条
[1]  
[Anonymous], 1973, LECT NOTES MATH
[2]   An elliptic problem arising from the unsteady transonic small disturbance equation [J].
Canic, S ;
Keyfitz, BL .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1996, 125 (02) :548-574
[3]   A class of quasilinear degenerate elliptic problems [J].
Canic, S ;
Kim, EH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 189 (01) :71-98
[4]   A free boundary problem for a quasi-linear degenerate elliptic equation: Regular reflection of weak shocks [J].
Canic, S ;
Keyfitz, BL ;
Kim, EH .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2002, 55 (01) :71-92
[5]   On the existence of positive solutions of quasilinear elliptic boundary value problems [J].
Choi, YS ;
Kim, EH .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 155 (02) :423-442
[6]   A singular Gierer-Meinhardt system of elliptic equations [J].
Choi, YS ;
McKenna, PJ .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2000, 17 (04) :503-522
[7]   ON A SINGULAR QUASI-LINEAR ANISOTROPIC ELLIPTIC BOUNDARY-VALUE PROBLEM [J].
CHOI, YS ;
LAZER, AC ;
MCKENNA, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (07) :2633-2641
[8]   A singular quasilinear anisotropic elliptic boundary value problem. II [J].
Choi, YS ;
McKenna, PJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1998, 350 (07) :2925-2937
[9]   A singular Gierer-Meinhardt system of elliptic equations: the classical case [J].
Choi, YS ;
McKenna, PJ .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2003, 55 (05) :521-541
[10]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029