Anyon Condensation and Continuous Topological Phase Transitions in Non-Abelian Fractional Quantum Hall States

被引:58
作者
Barkeshli, Maissam [1 ]
Wen, Xiao-Gang [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
FIELD-THEORIES;
D O I
10.1103/PhysRevLett.105.216804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a series of possible continuous quantum phase transitions between fractional quantum Hall states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p, p, p - 3) Abelian two-component state, while the other side is the non-Abelian Z(4) parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z(2) gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at nu = 2/3 and single-component systems at nu = 8/3.
引用
收藏
页数:4
相关论文
共 33 条
  • [11] Cabra DC, 2000, INT J MOD PHYS A, V15, P4857, DOI 10.1142/S0217751X00002354
  • [12] Activation gaps of fractional quantum Hall effect in the second Landau level
    Choi, H. C.
    Kang, W.
    Das Sarma, S.
    Pfeiffer, L. N.
    West, K. W.
    [J]. PHYSICAL REVIEW B, 2008, 77 (08):
  • [13] THE OPERATOR ALGEBRA OF ORBIFOLD MODELS
    DIJKGRAAF, R
    VAFA, C
    VERLINDE, E
    VERLINDE, H
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (03) : 485 - 526
  • [14] PHASE-DIAGRAMS OF LATTICE GAUGE-THEORIES WITH HIGGS FIELDS
    FRADKIN, E
    SHENKER, SH
    [J]. PHYSICAL REVIEW D, 1979, 19 (12): : 3682 - 3697
  • [15] MODULAR INVARIANT PARTITION-FUNCTIONS FOR PARAFERMIONIC FIELD-THEORIES
    GEPNER, D
    QIU, ZG
    [J]. NUCLEAR PHYSICS B, 1987, 285 (03) : 423 - 453
  • [16] Collective States of Interacting Anyons, Edge States, and the Nucleation of Topological Liquids
    Gils, Charlotte
    Ardonne, Eddy
    Trebst, Simon
    Ludwig, Andreas W. W.
    Troyer, Matthias
    Wang, Zhenghan
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [17] Non-Abelian Anyons: When Ising Meets Fibonacci
    Grosfeld, E.
    Schoutens, K.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 103 (07)
  • [18] One-component to two-component transition of the nu=2/3 fractional quantum Hall effect in a wide quantum well induced by an in-plane magnetic field
    Lay, TS
    Jungwirth, T
    Smrcka, L
    Shayegan, M
    [J]. PHYSICAL REVIEW B, 1997, 56 (12) : R7092 - R7095
  • [19] NONABELIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT
    MOORE, G
    READ, N
    [J]. NUCLEAR PHYSICS B, 1991, 360 (2-3) : 362 - 396
  • [20] Quantum Hall phase diagram of half-filled bilayers in the lowest and the second orbital Landau levels: Abelian versus non-Abelian incompressible fractional quantum Hall states
    Peterson, Michael R.
    Das Sarma, S.
    [J]. PHYSICAL REVIEW B, 2010, 81 (16)