Anyon Condensation and Continuous Topological Phase Transitions in Non-Abelian Fractional Quantum Hall States

被引:59
作者
Barkeshli, Maissam [1 ]
Wen, Xiao-Gang [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
FIELD-THEORIES;
D O I
10.1103/PhysRevLett.105.216804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a series of possible continuous quantum phase transitions between fractional quantum Hall states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p, p, p - 3) Abelian two-component state, while the other side is the non-Abelian Z(4) parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z(2) gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at nu = 2/3 and single-component systems at nu = 8/3.
引用
收藏
页数:4
相关论文
共 33 条
[11]  
Cabra DC, 2000, INT J MOD PHYS A, V15, P4857, DOI 10.1142/S0217751X00002354
[12]   Activation gaps of fractional quantum Hall effect in the second Landau level [J].
Choi, H. C. ;
Kang, W. ;
Das Sarma, S. ;
Pfeiffer, L. N. ;
West, K. W. .
PHYSICAL REVIEW B, 2008, 77 (08)
[13]   THE OPERATOR ALGEBRA OF ORBIFOLD MODELS [J].
DIJKGRAAF, R ;
VAFA, C ;
VERLINDE, E ;
VERLINDE, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1989, 123 (03) :485-526
[14]   PHASE-DIAGRAMS OF LATTICE GAUGE-THEORIES WITH HIGGS FIELDS [J].
FRADKIN, E ;
SHENKER, SH .
PHYSICAL REVIEW D, 1979, 19 (12) :3682-3697
[15]   MODULAR INVARIANT PARTITION-FUNCTIONS FOR PARAFERMIONIC FIELD-THEORIES [J].
GEPNER, D ;
QIU, ZG .
NUCLEAR PHYSICS B, 1987, 285 (03) :423-453
[16]   Collective States of Interacting Anyons, Edge States, and the Nucleation of Topological Liquids [J].
Gils, Charlotte ;
Ardonne, Eddy ;
Trebst, Simon ;
Ludwig, Andreas W. W. ;
Troyer, Matthias ;
Wang, Zhenghan .
PHYSICAL REVIEW LETTERS, 2009, 103 (07)
[17]   Non-Abelian Anyons: When Ising Meets Fibonacci [J].
Grosfeld, E. ;
Schoutens, K. .
PHYSICAL REVIEW LETTERS, 2009, 103 (07)
[18]   One-component to two-component transition of the nu=2/3 fractional quantum Hall effect in a wide quantum well induced by an in-plane magnetic field [J].
Lay, TS ;
Jungwirth, T ;
Smrcka, L ;
Shayegan, M .
PHYSICAL REVIEW B, 1997, 56 (12) :R7092-R7095
[19]   NONABELIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
MOORE, G ;
READ, N .
NUCLEAR PHYSICS B, 1991, 360 (2-3) :362-396
[20]   Quantum Hall phase diagram of half-filled bilayers in the lowest and the second orbital Landau levels: Abelian versus non-Abelian incompressible fractional quantum Hall states [J].
Peterson, Michael R. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2010, 81 (16)