Anyon Condensation and Continuous Topological Phase Transitions in Non-Abelian Fractional Quantum Hall States

被引:58
作者
Barkeshli, Maissam [1 ]
Wen, Xiao-Gang [1 ]
机构
[1] MIT, Dept Phys, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
FIELD-THEORIES;
D O I
10.1103/PhysRevLett.105.216804
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We find a series of possible continuous quantum phase transitions between fractional quantum Hall states at the same filling fraction in two-component quantum Hall systems. These can be driven by tuning the interlayer tunneling and/or interlayer repulsion. One side of the transition is the Halperin (p, p, p - 3) Abelian two-component state, while the other side is the non-Abelian Z(4) parafermion (Read-Rezayi) state. We predict that the transition is a continuous transition in the 3D Ising class. The critical point is described by a Z(2) gauged Ginzburg-Landau theory. These results have implications for experiments on two-component systems at nu = 2/3 and single-component systems at nu = 8/3.
引用
收藏
页数:4
相关论文
共 33 条
  • [1] Theory of Topological Edges and Domain Walls
    Bais, F. A.
    Slingerland, J. K.
    Haaker, S. M.
    [J]. PHYSICAL REVIEW LETTERS, 2009, 102 (22)
  • [2] Condensate-induced transitions between topologically ordered phases
    Bais, F. A.
    Slingerland, J. K.
    [J]. PHYSICAL REVIEW B, 2009, 79 (04)
  • [3] BARKESHLI M, ARXIV09060337
  • [4] BARKESHLI M, ARXIV10104270
  • [5] U(1) X U(1) XI Z2 Chern-Simons theory and Z4 parafermion fractional quantum Hall states
    Barkeshli, Maissam
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2010, 81 (04):
  • [6] Effective field theory and projective construction for Zk parafermion fractional quantum Hall states
    Barkeshli, Maissam
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2010, 81 (15):
  • [7] Structure of quasiparticles and their fusion algebra in fractional quantum Hall states
    Barkeshli, Maissam
    Wen, Xiao-Gang
    [J]. PHYSICAL REVIEW B, 2009, 79 (19):
  • [8] 'One-dimensional' theory of the quantum Hall system
    Bergholtz, EJ
    Karlhede, A
    [J]. JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2006,
  • [9] Model fractional quantum Hall states and Jack polynomials
    Bernevig, B. Andrei
    Haldane, F. D. M.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 100 (24)
  • [10] Fractional quantum Hall hierarchy and the second Landau level
    Bonderson, Parsa
    Slingerland, J. K.
    [J]. PHYSICAL REVIEW B, 2008, 78 (12)