Shared Latent Structures Between Imaging Features and Biomarkers in Early Stages of Alzheimer's Disease: A Predictive Study

被引:0
作者
Casamitjana, Adria [1 ]
Petrone, Paula [2 ]
Luis Molinuevo, Jose [2 ,3 ,4 ,5 ]
Domingo Gispert, Juan [2 ,3 ,4 ]
Vilaplana, Veronica [1 ]
机构
[1] Univ Politecn Cataluna, UPC BarcelonaTech, ES-08034 Barcelona, Spain
[2] BarcelonaBeta Brain Res Ctr, Barcelona 08005, Spain
[3] Ctr Invest Biomed Red Bioingn Biomat & Nanomed CI, Madrid 28029, Spain
[4] Univ Pompeu Fabra, Barcelona 08002, Spain
[5] CIBER FES, Madrid 28029, Spain
关键词
Latent model; PLS; preclinical AD; CSF biomarkers; MRI; MILD COGNITIVE IMPAIRMENT; CSF BIOMARKERS; ASSOCIATION WORKGROUPS; DIAGNOSTIC GUIDELINES; CORTICAL THICKNESS; NATIONAL INSTITUTE; CEREBRAL-CORTEX; MRI; MCI; AD;
D O I
10.1109/JBHI.2019.2932565
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Magnetic resonance imaging (MRI) provides high resolution brain morphological information and is used as a biomarker in neurodegenerative diseases. Population studies of brain morphology often seek to identify pathological structural changes related to different diagnostic categories (e.g.: controls, mild cognitive impairment or dementia) which normally describe highly heterogeneous groups with a single categorical variable. Instead, multiple biomarkers are used as a proxy for pathology and are more powerful in capturing structural variability. Hence, using the joint modeling of brain morphology and biomarkers, we aim at describing structural changes related to any brain condition by means of few underlying processes. In this regard, we use a multivariate approach based on Projection to Latent Structures in its regression variant (PLSR) to study structural changes related to aging and AD pathology. MRI volumetric and cortical thickness measurements are used for brain morphology and cerebrospinal fluid (CSF) biomarkers (t-tau, p-tau and amyloid-beta) are used as a proxy for AD pathology. By relating both sets of measurements, PLSR finds a low-dimensional latent space describing AD pathological effects on brain structure. The proposed framework allows us to separately model aging effects on brain morphology as a confounder variable orthogonal to the pathological effect. The predictive power of the associated latent spaces (i.e., the capacity of predicting biomarker values) is assessed in a cross-validation framework.
引用
收藏
页码:365 / 376
页数:12
相关论文
共 50 条
[31]   The efficacy of plasma biomarkers in early diagnosis of Alzheimer's disease [J].
Wang, Tao ;
Xiao, Shifu ;
Liu, Yuanyuan ;
Lin, Zhiguang ;
Su, Ning ;
Li, Xia ;
Li, Guanjun ;
Zhang, Mingyuan ;
Fang, Yiru .
INTERNATIONAL JOURNAL OF GERIATRIC PSYCHIATRY, 2014, 29 (07) :713-719
[32]   A Biomarker Combining Imaging and Neuropsychological Assessment for Tracking Early Alzheimer's Disease in Clinical Trials [J].
Verma, Nishant ;
Beretvas, S. Natasha ;
Pascual, Belen ;
Masdeu, Joseph C. ;
Markey, Mia K. .
CURRENT ALZHEIMER RESEARCH, 2018, 15 (05) :429-442
[33]   Salivaomics as a Potential Tool for Predicting Alzheimer's Disease During the Early Stages of Neurodegeneration [J].
Francois, Maxime ;
Karpe, Avinash ;
Liu, Jian-Wei ;
Beale, David ;
Hor, Maryam ;
Hecker, Jane ;
Faunt, Jeff ;
Maddison, John ;
Johns, Sally ;
Doecke, James ;
Rose, Stephen ;
Leifert, Wayne R. .
JOURNAL OF ALZHEIMERS DISEASE, 2021, 82 (03) :1301-1313
[34]   The Association Between Biomarkers and Neuropsychiatric Symptoms Across the Alzheimer's Disease Spectrum [J].
Banning, Leonie C. P. ;
Ramakers, Inez H. G. B. ;
Koehler, Sebastian ;
Bron, Esther E. ;
Verhey, Frans R. J. ;
de Deyn, Peter Paul ;
Claassen, Jurgen A. H. R. ;
Koek, Huiberdina L. ;
Middelkoop, Huub A. M. ;
van der Flier, Wiesje M. ;
van der Lugt, Aad ;
Aalten, Pauline .
AMERICAN JOURNAL OF GERIATRIC PSYCHIATRY, 2020, 28 (07) :735-744
[35]   Relationship between cerebrospinal fluid biomarkers of Alzheimer's disease and cognition in cognitively normal older adults [J].
Pettigrew, Corinne ;
Soldan, Anja ;
Moghekar, Abhay ;
Wang, Mei-Cheng ;
Gross, Alden L. ;
O'Brien, Richard ;
Albert, Marilyn .
NEUROPSYCHOLOGIA, 2015, 78 :63-72
[36]   Accurate Prediction of Conversion to Alzheimer's Disease using Imaging, Genetic, and Neuropsychological Biomarkers [J].
Dukart, Juergen ;
Sambataro, Fabio ;
Bertolino, Alessandro .
JOURNAL OF ALZHEIMERS DISEASE, 2016, 49 (04) :1143-1159
[37]   Enrichment of MCI and early Alzheimer's disease treatment trials using neurochemical & imaging candidate biomarkers [J].
Hampel, H. ;
Broich, K. .
JOURNAL OF NUTRITION HEALTH & AGING, 2009, 13 (04) :373-375
[38]   High PIB Retention in Alzheimer's Disease is an Early Event with Complex Relationship with CSF Biomarkers and Functional Parameters [J].
Forsberg, A. ;
Almkvist, O. ;
Engler, H. ;
Wall, A. ;
Langstrom, B. ;
Nordberg, A. .
CURRENT ALZHEIMER RESEARCH, 2010, 7 (01) :56-66
[39]   Amyloid Imaging in Early Detection of Alzheimer's Disease [J].
Nordberg, Agneta .
NEURODEGENERATIVE DISEASES, 2010, 7 (1-3) :136-138
[40]   Predicting Alzheimer Disease with β-Amyloid Imaging: Results from the Australian Imaging, Biomarkers, and Lifestyle Study of Ageing [J].
Rowe, Christopher C. ;
Bourgeat, Pierrick ;
Ellis, Kathryn A. ;
Brown, Belinda ;
Lim, Yen Ying ;
Mulligan, Rachel ;
Jones, Gareth ;
Maruff, Paul ;
Woodward, Michael ;
Price, Roger ;
Robins, Peter ;
Tochon-Danguy, Henri ;
O'Keefe, Graeme ;
Pike, Kerryn E. ;
Yates, Paul ;
Szoeke, Cassandra ;
Salvado, Olivier ;
Macaulay, S. Lance ;
O'Meara, Timothy ;
Head, Richard ;
Cobiac, Lynne ;
Savage, Greg ;
Martins, Ralph ;
Masters, Colin L. ;
Ames, David ;
Villemagne, Victor L. .
ANNALS OF NEUROLOGY, 2013, 74 (06) :905-913