Many nonexpansive mappings are strict contractions

被引:0
作者
Reich, S [1 ]
Zaslavski, AJ [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
来源
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ABSTRACT AND APPLIED ANALYSIS | 2004年
关键词
Banach space; complete metric space; generic property; nonexpansive mapping; porous set; strict contraction;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a bounded closed convex subset of a Banach space X. We consider the space (A, d) of all nonexpansive self-mappings of K equipped with an appropriate complete metric d and prove that the complement of the subset of strict contractions is porous.
引用
收藏
页码:305 / 311
页数:7
相关论文
共 15 条
  • [1] [Anonymous], 1998, Colloq. Math., V77, P293
  • [2] [Anonymous], 2000, GEOMETRIC NONLINEAR
  • [3] [Anonymous], HDB METRIC FIXED POI
  • [4] On a generalized best approximation problem
    De Blasi, FS
    Myjak, J
    [J]. JOURNAL OF APPROXIMATION THEORY, 1998, 94 (01) : 54 - 72
  • [5] DEBLASI FS, 1991, J LOND MATH SOC, V44, P135
  • [6] DEBLASI FS, 1976, CR ACAD SCI A MATH, V283, P185
  • [7] DEBLASI FS, 1989, CR ACAD SCI I-MATH, V308, P51
  • [8] Krasnoselskii M. A., 1984, GEOMETRICAL METHODS
  • [9] Rakotch E., 1962, Proc. Amer. Math. Soc., V13, P459
  • [10] The set of noncontractive mappings is σ-porous in the space of all nonexpansive mappings
    Reich, S
    Zaslavski, AJ
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (06): : 539 - 544