New integral estimates in substatic Riemannian manifolds and the Alexandrov Theorem

被引:7
|
作者
Fogagnolo, Mattia [1 ]
Pinamonti, Andrea [2 ]
机构
[1] Scuola Normale Super Pisa, Ctr Ric Matemat Ennio Giorgi, Piazza Cavalieri 3, I-56126 Pisa, Italy
[2] Univ Trento, Via Sommar 14, I-38123 Povo, TN, Italy
来源
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES | 2022年 / 163卷
关键词
Alexandrov Theorem; Heintze-Karcher inequality; Substatic manifolds; Boundary value problem; CONSTANT MEAN-CURVATURE; FORMULA; HYPERSURFACES; STABILITY;
D O I
10.1016/j.matpur.2022.05.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive new integral estimates on substatic manifolds with boundary of horizon type, naturally arising in General Relativity. In particular, we generalize to this setting an identity due to Magnanini-Poggesi [24] leading to the Alexandrov Theorem in R-n and improve on a Heintze-Karcher type inequality due to Li-Xia [22]. Our method relies on the introduction of a new vector field with nonnegative divergence, generalizing to this setting the P-function technique of Weinberger [36]. (C) 2022 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:299 / 317
页数:19
相关论文
共 11 条
  • [1] Extrinsic eigenvalue estimates of Dirac operators on Riemannian manifolds
    Huang, Guangyue
    Chen, Li
    Sun, Xiaomei
    MATHEMATISCHE NACHRICHTEN, 2011, 284 (2-3) : 273 - 286
  • [2] On estimates for augmented Hessian type parabolic equations on Riemannian manifolds
    Jiao, Yang
    ELECTRONIC RESEARCH ARCHIVE, 2022, 30 (09): : 3266 - 3289
  • [3] Serrin's Problem and Alexandrov's Soap Bubble Theorem: Enhanced Stability via Integral Identities
    Magnanini, Rolando
    Poggesi, Giorgio
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (04) : 1181 - 1205
  • [4] A PRIORI ESTIMATES FOR THE OBSTACLE PROBLEM OF HESSIAN TYPE EQUATIONS ON RIEMANNIAN MANIFOLDS
    Dong, Weisong
    Wang, Tingting
    Bao, Gejun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2016, 15 (05) : 1769 - 1780
  • [5] GRADIENT ESTIMATES AND LIOUVILLE THEOREMSFOR A CLASS OF ELLIPTIC EQUATION ON RIEMANNIAN MANIFOLDS
    Wang, Youde
    Zhang, Aiqi
    Zhao, Hongxing
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2024, : 840 - 867
  • [6] Second order estimates for Hessian equations of parabolic type on Riemannian manifolds
    Jiao, Heming
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (12) : 7662 - 7680
  • [7] Gradient Estimates and Liouville Theorems for Lichnerowicz-Type Equation on Riemannian Manifolds
    Wang, Youde
    Zhang, Aiqi
    RESULTS IN MATHEMATICS, 2025, 80 (03)
  • [8] Generalized Minkowski Type Integral Formulas for Compact Hypersurfaces in Pseudo-Riemannian Manifolds
    Alessa, Norah
    Guediri, Mohammed
    MATHEMATICS, 2023, 11 (20)
  • [9] Allen-Cahn approximation of mean curvature flow in Riemannian manifolds I, uniform estimates
    Pisante, Adriano
    Punzo, Fabio
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2016, 15 : 309 - 341
  • [10] Eigenvalue estimates for a class of elliptic differential operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space
    Araujo Filho, Marcio C.
    Gomes, Jose N. V.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (04):