Existence of Lattices on General H-Type Groups

被引:0
作者
Furutani, Kenro [1 ]
Markina, Irina [2 ]
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
[2] Univ Bergen, Dept Math, N-5020 Bergen, Norway
关键词
Clifford module; nilpotent two step algebra; lattice; general H-type algebras; SUB-LAPLACIAN; ZETA-FUNCTION; GEOMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a two step nilpotent Lie algebra endowed with non-degenerate scalar product [center dot,center dot] and let N = V circle plus(perpendicular to) Z, where Z is the center of the Lie algebra and V its orthogonal complement with respect to the scalar product. We prove that if (V, [center dot,center dot]v) is the Clifford module for the Clifford algebra Cl(Z, [center dot,center dot]z) such that the homomorphism J: Cl(Z, (center dot,center dot)z) --> End(V) is skew symmetric with respect to the scalar product [center dot,center dot]v, or in other words the Lie algebra N satisfies conditions of general H-type Lie algebras [6, 13], then there is a basis with respect to which the structural constants of the Lie algebra N are all +/- 1 or 0.
引用
收藏
页码:979 / 1011
页数:33
相关论文
共 29 条
  • [21] Nonholonomic Lorentzian Geometry on Some H-Type Groups
    Korolko, Anna
    Markina, Irina
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2009, 19 (04) : 864 - 889
  • [22] LAM TY, 1973, MATH LECT NOTE SERIE
  • [23] Lawson H.B., 1989, Princeton Math. Ser., V38, pxii+427
  • [24] Magnin L., 1986, Journal of Geometry and Physics, V3, P119, DOI 10.1016/0393-0440(86)90005-7
  • [25] MALCEV AI, 1951, AM MATH SOC TRANSLAT, V39
  • [26] Maltsev A.I., 1949, IZV AKAD NAUK SSSR M, V13, P9
  • [27] Sub-semi-Riemannian geometry of general H-type groups
    Molina, Mauricio Godoy
    Korolko, Anna
    Markina, Irina
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2013, 137 (06): : 805 - 833
  • [28] 7-DIMENSIONAL NILPOTENT LIE-ALGEBRAS
    SEELEY, C
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 335 (02) : 479 - 496
  • [29] Lie groups locally isomorphic to generalized Heisenberg groups
    Tamaru, Hiroshi
    Yoshida, Hisashi
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 136 (09) : 3247 - 3254