Existence of Lattices on General H-Type Groups

被引:0
作者
Furutani, Kenro [1 ]
Markina, Irina [2 ]
机构
[1] Tokyo Univ Sci, Fac Sci & Technol, Dept Math, Noda, Chiba 2788510, Japan
[2] Univ Bergen, Dept Math, N-5020 Bergen, Norway
关键词
Clifford module; nilpotent two step algebra; lattice; general H-type algebras; SUB-LAPLACIAN; ZETA-FUNCTION; GEOMETRY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let N be a two step nilpotent Lie algebra endowed with non-degenerate scalar product [center dot,center dot] and let N = V circle plus(perpendicular to) Z, where Z is the center of the Lie algebra and V its orthogonal complement with respect to the scalar product. We prove that if (V, [center dot,center dot]v) is the Clifford module for the Clifford algebra Cl(Z, [center dot,center dot]z) such that the homomorphism J: Cl(Z, (center dot,center dot)z) --> End(V) is skew symmetric with respect to the scalar product [center dot,center dot]v, or in other words the Lie algebra N satisfies conditions of general H-type Lie algebras [6, 13], then there is a basis with respect to which the structural constants of the Lie algebra N are all +/- 1 or 0.
引用
收藏
页码:979 / 1011
页数:33
相关论文
共 29 条
  • [1] [Anonymous], 1981, PUBL RES I MATH SCI, V17, P577, DOI DOI 10.2977/prims/1195185266
  • [2] [Anonymous], 1975, Graduate Texts in Mathematics
  • [3] Spectral zeta function of the sub-Laplacian on two step nilmanifolds
    Bauer, W.
    Furutani, K.
    Iwasaki, C.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2012, 97 (03): : 242 - 261
  • [4] Bauer W., 2010, ADV PARTIAL DIFFER E, V211, P183
  • [5] Spectral zeta function of a sub-Laplacian on product sub-Riemannian manifolds and zeta-regularized determinant
    Bauer, Wolfram
    Furutani, Kenro
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2010, 60 (09) : 1209 - 1234
  • [6] Spectral analysis and geometry of a sub-Riemannian structure on S3 and S7
    Bauer, Wolfram
    Furutani, Kenro
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2008, 58 (12) : 1693 - 1738
  • [7] Geometric analysis on H-type groups related to division algebras
    Calin, Ovidiu
    Chang, Der-Chen
    Markina, Irina
    [J]. MATHEMATISCHE NACHRICHTEN, 2009, 282 (01) : 44 - 68
  • [8] Geometric analysis on quaternion H-type groups
    Chang, DC
    Markina, I
    [J]. JOURNAL OF GEOMETRIC ANALYSIS, 2006, 16 (02) : 265 - 294
  • [9] A zeta function associated to the sub-Laplacian on the unit sphere in CN
    Chang, DC
    Li, SY
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2002, 86 (1): : 25 - 48
  • [10] Ciatti P., 2000, ANN MAT PUR APPL, V178, P1