Spatially Continuous and High-Resolution Land Surface Temperature Product Generation: A review of reconstruction and spatiotemporal fusion techniques

被引:109
作者
Wu, Penghai [1 ]
Yin, Zhixiang [1 ,2 ]
Zeng, Chao [3 ,4 ]
Duan, Si-Bo [5 ]
Gottsche, Frank-Michael [6 ,7 ,8 ,9 ]
Ma, Xiaoshuang [10 ]
Li, Xinghua [11 ]
Yang, Hui [12 ]
Shen, Huanfeng [13 ]
机构
[1] Anhui Univ, Sch Resources & Environm Engn, Hefei 230601, Peoples R China
[2] Chinese Acad Sci, Inst Geodesy & Geophys, Phys Geog, Wuhan, Peoples R China
[3] Tsinghua Univ, Dept Hydraul Engn, Beijing, Peoples R China
[4] Wuhan Univ, Sch Resources & Environm Sci, Wuhan 430079, Peoples R China
[5] Chinese Acad Agr Sci, Inst Agr Resources & Reg Planning, Beijing 100081, Peoples R China
[6] Uppsala Univ, Dept Earth Sci, Uppsala, Sweden
[7] Forschungszentrum Karlsruhe, Inst Meteorol & Climate Res, D-6980 Karlsruhe, Germany
[8] United Arab Emirates UAE Univ, Abu Dhabi, U Arab Emirates
[9] Karlsruhe Inst Technol, Karlsruhe, Germany
[10] Anhui Univ, Resources & Environm Engn Dept, Hefei 230601, Peoples R China
[11] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
[12] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Peoples R China
[13] Wuhan Univ, Sch Resource & Environm Sci SRES, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Land surface temperature; Spatial resolution; Land surface; Satellite broadcasting; Spatiotemporal phenomena; Remote sensing; Clouds; MAPPING DAILY EVAPOTRANSPIRATION; POLAR ORBITING SATELLITES; TIME-SERIES; TEMPORAL RESOLUTION; REFLECTANCE FUSION; CLOUDY CONDITIONS; VEGETATION INDEX; DIURNAL CYCLE; LONG-TERM; MODIS;
D O I
10.1109/MGRS.2021.3050782
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Remotely sensed land surface temperature (LST) with spatial continuity and high spatiotemporal resolution (hereafter referred to as high resolution) is a crucial parameter for studying the thermal environment and has important applications in many fields. However, adverse atmospheric conditions, sensor malfunctioning, and scanning gaps between orbits frequently introduce spatial discontinuities into satellite-retrieved LST products. For a single sensor, a tradeoff occurs between temporal and spatial resolutions; therefore, it is almost impossible to obtain images in high resolution.
引用
收藏
页码:112 / 137
页数:26
相关论文
共 154 条
[51]   Estimation of Land Surface Temperature through Blending MODIS and AMSR-E Data with the Bayesian Maximum Entropy Method [J].
Kou, Xiaokang ;
Jiang, Lingmei ;
Bo, Yanchen ;
Yan, Shuang ;
Chai, Linna .
REMOTE SENSING, 2016, 8 (02)
[52]   Uncertainty estimation method and Landsat 7 global validation for the Landsat surface temperature product [J].
Laraby, Kelly G. ;
Schott, John R. .
REMOTE SENSING OF ENVIRONMENT, 2018, 216 :472-481
[53]   Blending multi-resolution satellite sea surface temperature (SST) products using Bayesian maximum entropy method [J].
Li, Aihua ;
Bo, Yanchen ;
Zhu, Yuxin ;
Guo, Peng ;
Bi, Jian ;
He, Yaqian .
REMOTE SENSING OF ENVIRONMENT, 2013, 135 :52-63
[54]   Evaluation of the VIIRS and MODIS LST products in an arid area of Northwest China [J].
Li, Hua ;
Sun, Donglian ;
Yu, Yunyue ;
Wang, Hongyan ;
Liu, Yuling ;
Liu, Qinhuo ;
Du, Yongming ;
Wang, Heshun ;
Cao, Biao .
REMOTE SENSING OF ENVIRONMENT, 2014, 142 :111-121
[55]   Generating a series of fine spatial and temporal resolution land cover maps by fusing coarse spatial resolution remotely sensed images and fine spatial resolution land cover maps [J].
Li, Xiaodong ;
Ling, Feng ;
Foody, Giles M. ;
Ge, Yong ;
Zhang, Yihang ;
Du, Yun .
REMOTE SENSING OF ENVIRONMENT, 2017, 196 :293-311
[56]   Creating a seamless 1 km resolution daily land surface temperature dataset for urban and surrounding areas in the conterminous United States [J].
Li, Xiaoma ;
Zhou, Yuyu ;
Asrar, Ghassem R. ;
Zhu, Zhengyuan .
REMOTE SENSING OF ENVIRONMENT, 2018, 206 :84-97
[57]   Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific Objectives and Experimental Design [J].
Li, Xin ;
Cheng, Guodong ;
Liu, Shaomin ;
Xiao, Qing ;
Ma, Mingguo ;
Jin, Rui ;
Che, Tao ;
Liu, Qinhuo ;
Wang, Weizhen ;
Qi, Yuan ;
Wen, Jianguang ;
Li, Hongyi ;
Zhu, Gaofeng ;
Guo, Jianwen ;
Ran, Youhua ;
Wang, Shuoguo ;
Zhu, Zhongli ;
Zhou, Jian ;
Hu, Xiaoli ;
Xu, Ziwei .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2013, 94 (08) :1145-1160
[58]   Recovering Quantitative Remote Sensing Products Contaminated by Thick Clouds and Shadows Using Multitemporal Dictionary Learning [J].
Li, Xinghua ;
Shen, Huanfeng ;
Zhang, Liangpei ;
Zhang, Hongyan ;
Yuan, Qiangqiang ;
Yang, Gang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (11) :7086-7098
[59]   Mapping daily evapotranspiration based on spatiotemporal fusion of ASTER and MODIS images over irrigated agricultural areas in the Heihe River Basin, Northwest China [J].
Li, Yan ;
Huang, Chunlin ;
Hou, Jinliang ;
Gu, Juan ;
Zhu, Gaofeng ;
Li, Xin .
AGRICULTURAL AND FOREST METEOROLOGY, 2017, 244 :82-97
[60]  
Li Z. L., 2018, COMPREHENSIVE REMOTE, V5, P264