Tightness of the recentered maximum of log-correlated Gaussian fields

被引:8
作者
Acosta, Javier [1 ]
机构
[1] Univ Minnesota, Minneapolis, MN 55455 USA
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2014年 / 19卷
关键词
Log-correlation; Gaussian fields; Tightness;
D O I
10.1214/EJP.v19-3170
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a family of centered Gaussian fields on the d-dimensional unit box, whose covariance decreases logarithmically in the distance between points. We prove tightness of the recentered maximum of the Gaussian fields and provide exponentially decaying bounds on the right and left tails. We then apply this result to a version of the two-dimensional continuous Gaussian free field.
引用
收藏
页码:1 / 25
页数:25
相关论文
共 16 条
[1]  
Adler R. J., 1990, LECT NOTES MONOGRAPH
[2]  
[Anonymous], CRITICAL GAUSSIAN MU
[3]  
[Anonymous], 2007, SPRINGER MONOGRAPHS
[4]  
Bolthausen E, 2001, ANN PROBAB, V29, P1670
[5]  
Bramson M., 2013, CONVERGENCE LAW MAXI
[6]   Tightness of the Recentered Maximum of the Two-Dimensional Discrete Gaussian Free Field [J].
Bramson, Maury ;
Zeitouni, Ofer .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (01) :1-20
[7]   Extremes of the discrete two-dimensional Gaussian free field [J].
Daviaud, Olivier .
ANNALS OF PROBABILITY, 2006, 34 (03) :962-986
[8]  
Ding J., 2011, EXPONENTIAL DOUBLE E
[9]  
Ding J., 2012, EXTREME VALUES 2 DIM
[10]  
DYNKIN EB, 1980, B AM MATH SOC, V3, P975, DOI 10.1090/S0273-0979-1980-14831-4