C-parallel and C-proper Slant Curves of S-manifolds

被引:1
作者
Guvenc, Saban [1 ]
Ozgur, Cihan [1 ]
机构
[1] Balikesir Univ, Fac Arts & Sci, Dept Math, TR-10145 Balikesir, Turkey
关键词
C-parallel curve; C-proper curve; slant curve; S-manifold; LEGENDRE CURVES; SUBMANIFOLDS;
D O I
10.2298/FIL1919305G
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we define and study C-parallel and C-proper slant curves of S-manifolds. We prove that a slant curve gamma in an S-manifold of order r >= 3, under certain conditions, is C-parallel or C-parallel in the normal bundle if and only if it is a non-Legendre slant helix or Legendre helix, respectively. Moreover, under certain conditions, we show that gamma is C-proper or C-proper in the normal bundle if and only if it is a non-Legendre slant curve or Legendre curve, respectively. We also give two examples of such curves in R2m+s(-3s).
引用
收藏
页码:6305 / 6313
页数:9
相关论文
共 17 条
  • [1] [Anonymous], 1984, Series in Pure Mathematics
  • [2] [Anonymous], 1986, J HOKKAIDO U EDU SEC
  • [3] [Anonymous], 1972, ANN SCUOLA NORM-SCI
  • [4] [Anonymous], 1966, Kodai Math. Sem. Rep
  • [5] A characterisation of helices and cornu spirals in real space forms
    Arroyo, J
    Barros, M
    Garay, OJ
    [J]. BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1997, 56 (01) : 37 - 49
  • [6] ON LEGENDRE CURVES IN CONTACT 3-MANIFOLDS
    BAIKOUSSIS, C
    BLAIR, DE
    [J]. GEOMETRIAE DEDICATA, 1994, 49 (02) : 135 - 142
  • [7] Blair D.E., 1970, J. Differ. Geom, V4, P155, DOI DOI 10.4310/JDG/1214429380
  • [8] Blair D. E., 2002, Riemannian Geometry of Contact and Symplectic Manifolds, VVol. 203
  • [9] THE CURVATURE OF SUBMANIFOLDS OF AN S-SPACE FORM
    CABRERIZO, JL
    FERNANDEZ, LM
    FERNANDEZ, M
    [J]. ACTA MATHEMATICA HUNGARICA, 1993, 62 (3-4) : 373 - 383
  • [10] 陈百明, 1989, 自然资源, P1