Comparison of splitting algorithms for the rigid body

被引:16
作者
Fassò, F [1 ]
机构
[1] Univ Padua, Dipartimento Matemat Pura & Appl, I-35131 Padua, Italy
基金
瑞士国家科学基金会;
关键词
symplectic integrators; splitting methods; numerical integration of rigid bodies;
D O I
10.1016/S0021-9991(03)00232-8
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We compare several different second-order splitting algorithms for the asymmetric rigid body, with the aim of determining which one produces the smallest energy error for a given rigid body, namely, for given moments of inertia. The investigation is based on the analysis of the dominant term of the modified Hamiltonian and indicates that different algorithms can produce energy errors which differ by several orders of magnitude. As a byproduct of this analysis we remark that, for the special case of a flat rigid body with moments of inertia proportional to (1, 0.75 0.25), one of the considered algorithms is in fact of order four. (C) 2003 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:527 / 538
页数:12
相关论文
共 11 条
[1]  
Abraham R., 1978, Foundations of mechanics
[2]  
Arnold V.I., 1989, MATH METHODS CLASSIC
[3]   A changing-chart symplectic algorithm for rigid bodies and other Hamiltonian systems on manifolds [J].
Benettin, G ;
Cherubini, AM ;
Fassò, F .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2001, 23 (04) :1189-1203
[4]   Symplectic splitting methods for rigid body molecular dynamics [J].
Dullweber, A ;
Leimkuhler, B ;
McLachlan, R .
JOURNAL OF CHEMICAL PHYSICS, 1997, 107 (15) :5840-5851
[5]  
Hairer E., 2002, Springer Series in Computational Mathematics
[6]  
LEIMANIS E, 1965, SPRINGER TRACTS NATU, V7
[7]  
Marsden J.E., 2013, INTRO MECH SYMMETRY, V17
[8]   EXPLICIT LIE-POISSON INTEGRATION AND THE EULER EQUATIONS [J].
MCLACHLAN, RI .
PHYSICAL REVIEW LETTERS, 1993, 71 (19) :3043-3046
[9]   THE ACCURACY OF SYMPLECTIC INTEGRATORS [J].
MCLACHLAN, RI ;
ATELA, P .
NONLINEARITY, 1992, 5 (02) :541-562
[10]   MOMENTUM CONSERVING SYMPLECTIC INTEGRATORS [J].
REICH, S .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 76 (04) :375-383