Tractable Multivariate Binary Density Estimation and the Restricted Boltzmann Forest

被引:10
作者
Larochelle, Hugo [1 ]
Bengio, Yoshua [2 ]
Turian, Joseph [2 ]
机构
[1] Univ Toronto, Dept Comp Sci, Toronto, ON M5S 3G4, Canada
[2] Univ Montreal, Dept IRO, Montreal, PQ H3T 1J4, Canada
关键词
D O I
10.1162/NECO_a_00014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We investigate the problem of estimating the density function of multivariate binary data. In particular, we focus on models for which computing the estimated probability of any data point is tractable. In such a setting, previous work has mostly concentrated on mixture modeling approaches. We argue that for the problem of tractable density estimation, the restricted Boltzmann machine (RBM) provides a competitive framework for multivariate binary density modeling. With this in mind, we also generalize the RBM framework and present the restricted Boltzmann forest (RBForest), which replaces the binary variables in the hidden layer of RBMs with groups of tree-structured binary variables. This extension allows us to obtain models that have more modeling capacity but remain tractable. In experiments on several data sets, we demonstrate the competitiveness of this approach and study some of its properties.
引用
收藏
页码:2285 / 2307
页数:23
相关论文
共 50 条
[21]   A combined strategy for multivariate density estimation [J].
Cholaquidis, Alejandro ;
Fraiman, Ricardo ;
Ghattas, Badih ;
Kalemkerian, Juan .
JOURNAL OF NONPARAMETRIC STATISTICS, 2021, 33 (01) :39-59
[22]   Multivariate density estimation by probing depth [J].
Fraiman, R ;
Liu, RY ;
Meloche, J .
L(1)-STATISTICAL PROCEDURES AND RELATED TOPICS, 1997, 31 :415-430
[23]   Adaptive estimation of the mode of a multivariate density [J].
Klemelä, J .
JOURNAL OF NONPARAMETRIC STATISTICS, 2005, 17 (01) :83-105
[24]   Simple estimation of the mode of a multivariate density [J].
Abraham, C ;
Biau, G ;
Cadre, B .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2003, 31 (01) :23-34
[25]   Multivariate Density Estimation by Neural Networks [J].
Peerlings, Dewi E. W. ;
van den Brakel, Jan A. ;
Basturk, Nalan ;
Puts, Marco J. H. .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (02) :2436-2447
[26]   Multivariate locally adaptive density estimation [J].
Sain, SR .
COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2002, 39 (02) :165-186
[27]   Flexible multivariate regression density estimation [J].
Tung Dao ;
Minh-Ngoc Tran .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (20) :4703-4717
[28]   Multivariate density estimation: A comparative study [J].
Cwik, J ;
Koronacki, J .
NEURAL COMPUTING & APPLICATIONS, 1997, 6 (03) :173-185
[29]   NONPARAMETRIC ESTIMATION OF MODE OF A MULTIVARIATE DENSITY [J].
SAMANTA, M .
SOUTH AFRICAN STATISTICAL JOURNAL, 1973, 7 (02) :109-117
[30]   Random Forest Density Estimation [J].
Wen, Hongwei ;
Hang, Hanyuan .
INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,