On the prime spectrum of commutative semigroup rings

被引:2
作者
Hassani, SA [1 ]
Dobbs, DE
Kabbaj, SE
机构
[1] Univ SM Ben Abdellah, Fac Sci Saiss, Dept Math, Fes, Morocco
[2] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[3] Univ SM Ben Abdellah, Fac Sci Dhar Al Mehraz, Dept Math & Informat, Fes, Morocco
关键词
D O I
10.1080/00927879808826298
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let A be an integral domain and S a torsion-free cancellative Abelian semigroup. By analogy with known results oil polynomial rings and group rings, results are sought for a number of properties of the semigroup ring A[S]. The properties of interest include coequidimensionality, (universal) catenarity, (stably strong) S-domain, and (locally, residually, totally) Jaffard domain. Positive results, leading to new examples of rings with some of the above properties, are obtained in case (the quotient group of) S has rank 1 or S is finitely generated. An example shows that some results do not carry over in case S has rank 2 but is not finitely generated.
引用
收藏
页码:2559 / 2589
页数:31
相关论文
共 23 条
[1]  
AMEZIANE S, UNPUB SPECTRUM GROUP
[2]  
Anderson D. F., 1988, EXPO MATH, V6, P145
[3]   UNIVERSALLY CATENARIAN DOMAINS OF D+M TYPE [J].
ANDERSON, DF ;
DOBBS, DE ;
KABBAJ, S ;
MULAY, SB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 104 (02) :378-384
[4]  
Arnold J. T., 1976, Houston Journal of Mathematics, V2, P299
[5]  
BASTIDA E, 1973, MICH MATH J, V20, P79
[6]   2 SUFFICIENT CONDITIONS FOR UNIVERSAL CATENARITY [J].
BOUVIER, A ;
DOBBS, DE ;
FONTANA, M .
COMMUNICATIONS IN ALGEBRA, 1987, 15 (04) :861-872
[7]   UNIVERSALLY CATENARIAN INTEGRAL-DOMAINS [J].
BOUVIER, A ;
DOBBS, DE ;
FONTANA, M .
ADVANCES IN MATHEMATICS, 1988, 72 (02) :211-238
[8]   PRIME IDEALS AND LOCALIZATION IN COMMUTATIVE GROUP RINGS [J].
BREWER, JW ;
COSTA, DL ;
LADY, EL .
JOURNAL OF ALGEBRA, 1975, 34 (02) :300-308
[9]   B,I,D-CONSTRUCTION AND LOCAL OR RESIDUAL JAFFARD RINGS [J].
CAHEN, PJ .
ARCHIV DER MATHEMATIK, 1990, 54 (02) :125-141
[10]  
Dobbs D. E., 1974, Commun. Algebra, V1, P439, DOI [10.1080/00927877408548715, DOI 10.1080/00927877408548715]