A deep learning approach for converting prompt gamma images to proton dose distributions: A Monte Carlo simulation study

被引:16
作者
Liu, Chih-Chieh [1 ]
Huang, Hsuan-Ming [2 ]
机构
[1] Univ Calif Davis, Dept Biomed Engn, Davis, CA 95616 USA
[2] Natl Taiwan Univ, Coll Med, Inst Med Device & Imaging, 1,Sec 1,Jen Rd, Taipei 100, Taiwan
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2020年 / 69卷
关键词
Prompt gamma imaging; Proton dose; Deep learning; BEAM RANGE VERIFICATION; COMPUTED-TOMOGRAPHY; PET; EMISSION; RECONSTRUCTION; THERAPY; CAMERA;
D O I
10.1016/j.ejmp.2019.12.006
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: In proton therapy, imaging prompt gamma (PG) rays has the potential to verify proton dose (PD) distribution. Despite the fact that there is a strong correlation between the gamma-ray emission and PD, they are still different in terms of the distribution and the Bragg peak (BP) position. In this work, we investigated the feasibility of using a deep learning approach to convert PG images to PD distributions. Methods: We designed the Monte Carlo simulations using 20 digital brain phantoms irradiated with a 100-MeV proton pencil beam. Each phantom was used to simulate 200 pairs of PG images and PD distributions. A convolutional neural network based on the U-net architecture was trained to predict PD distributions from PG images. Results: Our simulation results show that the pseudo PD distributions derived from the corresponding PG images agree well with the simulated ground truths. The mean of the BP position errors from each phantom was less than 0.4 mm. We also found that 2000 pairs of PG images and dose distributions would be sufficient to train the U-net. Moreover, the trained network could be deployed on the unseen data (i.e. different beam sizes, proton energies and real patient CT data). Conclusions: Our simulation study has shown the feasibility of predicting PD distributions from PG images using a deep learning approach, but the reliable prediction of PD distributions requires high-quality PG images. Image-degrading factors such as low counts and limited spatial resolution need to be considered in order to obtain high-quality PG images.
引用
收藏
页码:110 / 119
页数:10
相关论文
共 42 条
[1]   GEANT4-a simulation toolkit [J].
Agostinelli, S ;
Allison, J ;
Amako, K ;
Apostolakis, J ;
Araujo, H ;
Arce, P ;
Asai, M ;
Axen, D ;
Banerjee, S ;
Barrand, G ;
Behner, F ;
Bellagamba, L ;
Boudreau, J ;
Broglia, L ;
Brunengo, A ;
Burkhardt, H ;
Chauvie, S ;
Chuma, J ;
Chytracek, R ;
Cooperman, G ;
Cosmo, G ;
Degtyarenko, P ;
Dell'Acqua, A ;
Depaola, G ;
Dietrich, D ;
Enami, R ;
Feliciello, A ;
Ferguson, C ;
Fesefeldt, H ;
Folger, G ;
Foppiano, F ;
Forti, A ;
Garelli, S ;
Giani, S ;
Giannitrapani, R ;
Gibin, D ;
Cadenas, JJG ;
González, I ;
Abril, GG ;
Greeniaus, G ;
Greiner, W ;
Grichine, V ;
Grossheim, A ;
Guatelli, S ;
Gumplinger, P ;
Hamatsu, R ;
Hashimoto, K ;
Hasui, H ;
Heikkinen, A ;
Howard, A .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2003, 506 (03) :250-303
[2]   Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing [J].
AlBadawy, Ehab A. ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
MEDICAL PHYSICS, 2018, 45 (03) :1150-1158
[3]   Recent developments in GEANT4 [J].
Allison, J. ;
Amako, K. ;
Apostolakis, J. ;
Arce, P. ;
Asai, M. ;
Aso, T. ;
Bagli, E. ;
Bagulya, A. ;
Banerjee, S. ;
Barrand, G. ;
Beck, B. R. ;
Bogdanov, A. G. ;
Brandt, D. ;
Brown, J. M. C. ;
Burkhardt, H. ;
Canal, Ph. ;
Cano-Ott, D. ;
Chauvie, S. ;
Cho, K. ;
Cirrone, G. A. P. ;
Cooperman, G. ;
Cortes-Giraldo, M. A. ;
Cosmo, G. ;
Cuttone, G. ;
Depaola, G. ;
Desorgher, L. ;
Dong, X. ;
Dotti, A. ;
Elvira, V. D. ;
Folger, G. ;
Francis, Z. ;
Galoyan, A. ;
Garnier, L. ;
Gayer, M. ;
Genser, K. L. ;
Grichine, V. M. ;
Guatelli, S. ;
Gueye, P. ;
Gumplinger, P. ;
Howard, A. S. ;
Hrivnacova, I. ;
Hwang, S. ;
Incerti, S. ;
Ivanchenko, A. ;
Ivanchenko, V. N. ;
Jones, F. W. ;
Jun, S. Y. ;
Kaitaniemi, P. ;
Karakatsanis, N. ;
Karamitrosi, M. .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2016, 835 :186-225
[4]   Twenty new digital brain phantoms for creation of validation image data bases [J].
Aubert-Broche, Berengere ;
Griffin, Mark ;
Pike, G. Bruce ;
Evans, Alan C. ;
Collins, D. Louis .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2006, 25 (11) :1410-1416
[5]   Low-dose CT via convolutional neural network [J].
Chen, Hu ;
Zhang, Yi ;
Zhang, Weihua ;
Liao, Peixi ;
Li, Ke ;
Zhou, Jiliu ;
Wang, Ge .
BIOMEDICAL OPTICS EXPRESS, 2017, 8 (02) :679-694
[6]   Absolute dose reconstruction in proton therapy using PET imaging modality: feasibility study [J].
Fourkal, E. ;
Fan, J. ;
Veltchev, I. .
PHYSICS IN MEDICINE AND BIOLOGY, 2009, 54 (11) :N217-N228
[7]  
Ge CJ, 2018, IEEE ENG MED BIO, P5894, DOI 10.1109/EMBC.2018.8513556
[8]   Range assessment in particle therapy based on prompt γ-ray timing measurements [J].
Golnik, Christian ;
Hueso-Gonzalez, Fernando ;
Muller, Andreas ;
Dendooven, Peter ;
Enghardt, Wolfgang ;
Fiedler, Fine ;
Kormoll, Thomas ;
Roemer, Katja ;
Petzoldt, Johannes ;
Wagner, Andreas ;
Pausch, Guntram .
PHYSICS IN MEDICINE AND BIOLOGY, 2014, 59 (18) :5399-5422
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   Optimization of GEANT4 settings for Proton Pencil Beam Scanning simulations using GATE [J].
Grevillot, Loic ;
Frisson, Thibault ;
Zahra, Nabil ;
Bertrand, Damien ;
Stichelbaut, Frederic ;
Freud, Nicolas ;
Sarrut, David .
NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2010, 268 (20) :3295-3305