Generalizations of the Hill estimator - asymptotic versus finite sample behaviour

被引:56
作者
Gomes, MI
Martins, MJ
机构
[1] Univ Lisbon, DEIO, P-1749016 Lisbon, Portugal
[2] Univ Lisbon, Fac Ciencias, CEAUL, P-1749016 Lisbon, Portugal
[3] Univ Tecn Lisboa, ISA, P-1100 Lisbon, Portugal
关键词
D O I
10.1016/S0378-3758(00)00201-9
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The main goal of this paper is to present generalized Hill estimators parametrized in a positive real alpha (and equal to the Hill estimator when alpha = 1), which are asymptotically more efficient than the Hill estimator for a large region of values of alpha for any point of the (gamma,rho)-plane, where gamma > 0 is the tail index, related to the heaviness of the tail 1 - F of the underlying model F, and rho less than or equal to 0 is the second-order parameter, related to the rate of convergence of maximum values, linearly normalized, towards its limit. The practical validation of asymptotic results for small finite samples is done by means of simulation techniques in Frechet and Burr models, and some indications are provided on the choice of alpha. (C) 2001 Elsevier Science B.V. All rights reserved. MSG: 62G20; 62G30.
引用
收藏
页码:161 / 180
页数:20
相关论文
共 19 条
[1]  
DANIELSSON J, 1998, TI970164 ER U ROTT
[2]   Comparison of tail index estimators [J].
de Haan, L ;
Peng, L .
STATISTICA NEERLANDICA, 1998, 52 (01) :60-70
[3]  
de Haan L., 1970, MATH CTR TRACT, V32
[4]   Generalized regular variation of second order [J].
DeHaan, L ;
Stadtmuller, U .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1996, 61 :381-395
[5]   A MOMENT ESTIMATOR FOR THE INDEX OF AN EXTREME-VALUE DISTRIBUTION [J].
DEKKERS, ALM ;
EINMAHL, JHJ ;
DEHAAN, L .
ANNALS OF STATISTICS, 1989, 17 (04) :1833-1855
[6]   OPTIMAL CHOICE OF SAMPLE FRACTION IN EXTREME-VALUE ESTIMATION [J].
DEKKERS, ALM ;
DEHAAN, L .
JOURNAL OF MULTIVARIATE ANALYSIS, 1993, 47 (02) :173-195
[7]  
Draisma G., 1999, Extremes, V2, P367, DOI [10.1023/A:1009900215680, DOI 10.1023/A:1009900215680]
[8]  
Galambos J, 1987, ASYMPTOTIC THEORY EX
[9]  
GELUK JL, 1987, 40 CWI CTR MATH COMP
[10]   The limited distribution of the maximum term of a random series [J].
Gnedenko, B .
ANNALS OF MATHEMATICS, 1943, 44 :423-453