Matlab Experiments on Extrapolation of The Nonconforming Crouzeix-Raviart Element for Steklov Eigenvalue Problem

被引:0
作者
Bi, Hai [1 ]
Yang, Yi-Du [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
来源
ICMS2010: PROCEEDINGS OF THE THIRD INTERNATIONAL CONFERENCE ON MODELLING AND SIMULATION, VOL 2: MODELLING AND SIMULATION IN ENGINEERING | 2010年
关键词
Steklov eigenvalue problem; Crouzeix-Raviart element; extrapolation; Matlab; NUMERICAL EIGENVALUES; EXPANSIONS;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Since the regulartiy of eigenfunction of Steklov eigenvalue problem is rather low, it brings great difficulty in studying the asymptotic expansion of Crouzeix-Raviart element eigenvalues. This paper explores the extrapolation rules of the nonconforming Crouzeix-Raviart element for Steklov eigenvalue problem by numerical experiments of Mat lab programs. Numerical results show that the asymptotic expansion for numerical eigenvalues holds and the accuracy order of the approximate eigenvalue is improved by using the extrapolation.
引用
收藏
页码:160 / 163
页数:4
相关论文
共 13 条
[1]  
Babuska I., 1991, HDB NUMERICAL ANAL, V2
[2]  
Bergmann S., 1953, KERNEL FUNCTION ELLI
[3]  
Bermúdez A, 2000, NUMER MATH, V87, P201, DOI 10.1007/S002110000175
[4]  
Conca C., 1995, FLUID PERIODIC STRUC
[5]   A FINITE ELEMENT SPLITTING EXTRAPOLATION FOR SECOND ORDER HYPERBOLIC EQUATIONS [J].
He, Xiaoming ;
Lue, Tao .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (06) :4244-4265
[6]  
Huang J, 2004, J COMPUT MATH, V22, P719
[7]   Extrapolation and superconvergence of the Steklov eigenvalue problem [J].
Li, Mingxia ;
Lin, Qun ;
Zhang, Shuhua .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2010, 33 (01) :25-44
[8]  
Lin Q., 2006, Finite Element Methods: Accuracy and Improvement
[9]  
Lin Q., 1984, BONN MATH SCHRIFTEN, V158, P1
[10]   New expansions of numerical eigenvalues for -Δu = λρu by nonconforming elements [J].
Lin, Qun ;
Huang, Hung-Tsai ;
Li, Zi-Cai .
MATHEMATICS OF COMPUTATION, 2008, 77 (264) :2061-2084