On (a, b)-balancing numbers

被引:0
作者
Kovacs, Tunde [1 ]
Liptai, Kalman [2 ]
Olajos, Peter [3 ]
机构
[1] Univ Debrecen, Inst Math, H-4010 Debrecen, Hungary
[2] Eszterhazy Karoly Coll, Inst Math & Informat, H-3300 Eger, Hungary
[3] Univ Miskolc, Dept Appl Math, H-3515 Miskolc, Hungary
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2010年 / 77卷 / 3-4期
关键词
balancing number; hyperelliptic equations; Chabauty method; elliptic curves; COMBINATORIAL DIOPHANTINE EQUATIONS; ESTIMATING LINEAR-FORMS; ARITHMETIC PROGRESSIONS; ELLIPTIC LOGARITHMS; BALANCING NUMBERS; SPECIAL DOMAINS; INTEGER POINTS; PRODUCTS; POLYNOMIALS; THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A positive integer n is called a balancing number if 1 +. +(n - 1) = (n + 1) + .. + (n + r) for some positive integer r Balancing numbers and their generalizations have been investigated by several authors, from many aspects. In this paper we introduce the concept of balancing numbers in arithmetic progressions, and prove several effective finiteness and explicit results about them. In the proofs of our results, among others, we combine Baker's method, the modular method developed by Wiles and others, a result of Bennett about the diophantine equation vertical bar ax(n) - by(n)vertical bar = 1, the Chabauty method and the theory of elliptic curves
引用
收藏
页码:485 / 498
页数:14
相关论文
共 43 条
[1]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[2]  
Behera A, 1999, FIBONACCI QUART, V37, P98
[3]   Binomial Thue equations and polynomial powers [J].
Bennett, M. A. ;
Gyory, K. ;
Mignotte, M. ;
Pinter, A. .
COMPOSITIO MATHEMATICA, 2006, 142 (05) :1103-1121
[4]   Products of consecutive integers [J].
Bennett, MA .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2004, 36 :683-694
[5]  
Bennett MA, 2001, J REINE ANGEW MATH, V535, P1
[6]  
BERCZES A, FIBONACCI Q IN PRESS
[7]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[8]  
Brindza B, 1996, ACTA ARITH, V77, P97
[9]   ON S-INTEGRAL SOLUTIONS OF THE EQUATION YM=F(X) [J].
BRINDZA, B .
ACTA MATHEMATICA HUNGARICA, 1984, 44 (1-2) :133-139
[10]   Arithmetic progressions consisting of unlike powers [J].
Bruin, N. ;
Gyory, K. ;
Hajdu, L. ;
Tengely, Sz. .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2006, 17 (04) :539-555