Direct Alcohol Fuel Cells: Toward the Power Densities of Hydrogen-Fed Proton Exchange Membrane Fuel Cells

被引:52
作者
Chen, Yanxin [1 ,2 ]
Bellini, Marco [1 ]
Bevilacqua, Manuela [1 ]
Fornasiero, Paolo [2 ]
Lavacchi, Alessandro [1 ]
Miller, Hamish A. [1 ]
Wang, Lianqin [1 ,2 ]
Vizza, Francesco [1 ]
机构
[1] ICCOM CNR, Inst Chem Organometall Cpds, Polo Sci Area CNR, I-50019 Sesto Fiorentino, Italy
[2] Univ Trieste, ICCOM CNR Trieste Res Unit, Dept Chem & Pharmaceut Sci, I-34127 Trieste, Italy
关键词
biomass; electrochemistry; fuel cells; palladium; titanium; TIO2 NANOTUBE ARRAYS; ETHANOL ELECTROOXIDATION; ETHYLENE-GLYCOL; ALKALINE-MEDIUM; CATALYTIC-ACTIVITY; ANODE CATALYST; OXIDATION; ELECTROCATALYSTS; PALLADIUM; NANOPARTICLES;
D O I
10.1002/cssc.201402999
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A 2m thick layer of TiO2 nanotube arrays was prepared on the surface of the Ti fibers of a nonwoven web electrode. After it was doped with Pd nanoparticles (1.5mg(Pd)cm(-2)), this anode was employed in a direct alcohol fuel cell. Peak power densities of 210, 170, and 160mWcm(-2) at 80 degrees C were produced if the cell was fed with 10wt% aqueous solutions of ethanol, ethylene glycol, and glycerol, respectively, in 2M aqueous KOH. The Pd loading of the anode was increased to 6mgcm(-2) by combining four single electrodes to produce a maximum peak power density with ethanol at 80 degrees C of 335mWcm(-2). Such high power densities result from a combination of the open 3D structure of the anode electrode and the high electrochemically active surface area of the Pd catalyst, which promote very fast kinetics for alcohol electro-oxidation. The peak power and current densities obtained with ethanol at 80 degrees C approach the output of H-2-fed proton exchange membrane fuel cells.
引用
收藏
页码:524 / 533
页数:10
相关论文
共 58 条
[21]   An in situ Fourier transform infrared spectroelectrochemical study on ethanol electrooxidation on Pd in alkaline solution [J].
Fang, Xiang ;
Wang, Lianqin ;
Shen, Pei Kang ;
Cui, Guofeng ;
Bianchini, Claudio .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1375-1378
[22]   Tailoring properties of platinum supported catalysts by irreversible adsorbed adatoms toward ethanol oxidation for direct ethanol fuel cells [J].
Figueiredo, Marta C. ;
Santasalo-Aarnio, Annukka ;
Vidal-Iglesias, Francisco J. ;
Solla-Gullon, Jose ;
Feliu, Juan M. ;
Kontturi, Kyosti ;
Kallio, Tanja .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 140 :378-385
[23]   Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption [J].
Grden, Michal ;
Lukaszewski, Mariusz ;
Jerkiewicz, Gregory ;
Czerwinski, Andrzej .
ELECTROCHIMICA ACTA, 2008, 53 (26) :7583-7598
[24]   Dramatically Enhanced Cleavage of the C-C Bond Using an Electrocatalytically Coupled Reaction [J].
He, Qinggang ;
Shyam, Badri ;
Macounova, Katerina ;
Krtil, Petr ;
Ramaker, David ;
Mukerjee, Sanjeev .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (20) :8655-8661
[25]   Electrocatalytic Activity and Stability of Titania-Supported Platinum-Palladium Electrocatalysts for Polymer Electrolyte Membrane Fuel Cell [J].
Huang, Sheng-Yang ;
Ganesan, Prabhu ;
Popov, Branko N. .
ACS CATALYSIS, 2012, 2 (05) :825-831
[26]   Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications [J].
Huang, Sheng-Yang ;
Ganesan, Prabhu ;
Park, Sehkyu ;
Popov, Branko N. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (39) :13898-+
[27]   Fuels of the future [J].
Jang, Ben W. -L. ;
Glaeser, Roger ;
Dong, Mingdong ;
Liu, Chang-Jun .
ENERGY & ENVIRONMENTAL SCIENCE, 2010, 3 (03) :253-253
[28]   Comparison of methanol and ethylene glycol oxidation by alloy and Core-Shell platinum based catalysts [J].
Kaplan, D. ;
Burstein, L. ;
Rosenberg, Yu. ;
Peled, E. .
JOURNAL OF POWER SOURCES, 2011, 196 (20) :8286-8292
[29]  
Kocha SS, 2012, POLYMER ELECTROLYTE FUEL CELL DEGRADATION, P89, DOI 10.1016/B978-0-12-386936-4.10003-X
[30]   Non-platinum cathode catalysts for alkaline membrane fuel cells [J].
Kruusenberg, I. ;
Matisen, L. ;
Shah, Q. ;
Kannan, A. M. ;
Tammeveski, K. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (05) :4406-4412