Topographic Effects on Radiation in the WRF Model with the Immersed Boundary Method: Implementation, Validation, and Application to Complex Terrain

被引:39
作者
Arthur, Robert S. [1 ]
Lundquist, Katherine A. [1 ]
Mirocha, Jeffrey D. [1 ]
Chow, Fotini K. [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[2] Univ Calif Berkeley, Dept Civil & Environm Engn, Berkeley, CA 94720 USA
关键词
LARGE-EDDY SIMULATIONS; ENERGY BUDGET MICROCLIMATES; DEEP VALLEY RADIATION; WEATHER RESEARCH; TURBULENT-FLOW; SYSTEM; TRANSITION;
D O I
10.1175/MWR-D-18-0108.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Topographic effects on radiation, including both topographic shading and slope effects, are included in the Weather Research and Forecasting (WRF) Model, and here they are made compatible with the immersed boundary method (IBM). IBM is an alternative method for representing complex terrain that reduces numerical errors over sloped terrain, thus extending the range of slopes that can be represented in WRF simulations. The implementation of topographic effects on radiation is validated by comparing land surface fluxes, as well as temperature and velocity fields, between idealized WRF simulations both with and without IBM. Following validation, the topographic shading implementation is tested in a semirealistic simulation of flow over Granite Mountain, Utah, where topographic shading is known to affect downslope flow development in the evening. The horizontal grid spacing is 50 m and the vertical grid spacing is approximately 8-27 m near the surface. Such a case would fail to run in WRF with its native terrain-following coordinates because of large local slope values reaching up to 55 degrees. Good agreement is found between modeled surface energy budget components and observations from the Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program at a location on the east slope of Granite Mountain. In addition, the model captures large spatiotemporal inhomogeneities in the surface sensible heat flux that are important for the development of thermally driven flows over complex terrain.
引用
收藏
页码:3277 / 3292
页数:16
相关论文
共 53 条
[1]  
Bao J., 2016, 22ND SYMP ON BOUNDAR
[2]   Large-Eddy Simulation over Complex Terrain Using an Improved Immersed Boundary Method in the Weather Research and Forecasting Model [J].
Bao, Jingyi ;
Chow, Fotini Katopodes ;
Lundquist, Katherine A. .
MONTHLY WEATHER REVIEW, 2018, 146 (09) :2781-2797
[3]   Description and evaluation of the characteristics of the NCAR high-resolution land data assimilation system [J].
Chen, Fei ;
Manning, Kevin W. ;
LeMone, Margaret A. ;
Trier, Stanley B. ;
Alfieri, Joseph G. ;
Roberts, Rita ;
Tewari, Mukul ;
Niyogi, Dev ;
Horst, Thomas W. ;
Oncley, Steven P. ;
Basara, Jeffrey B. ;
Blanken, Peter D. .
JOURNAL OF APPLIED METEOROLOGY AND CLIMATOLOGY, 2007, 46 (06) :694-713
[4]   Modeling turbulent flow over fractal trees with renormalized numerical simulation [J].
Chester, Stuart ;
Meneveau, Charles ;
Parlange, Marc B. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (01) :427-448
[5]  
Colette A, 2003, J APPL METEOROL, V42, P1255, DOI 10.1175/1520-0450(2003)042<1255:ANSOIB>2.0.CO
[6]  
2
[7]   Real-time and retrospective forcing in the North American Land Data Assimilation System (NLDAS) project [J].
Cosgrove, BA ;
Lohmann, D ;
Mitchell, KE ;
Houser, PR ;
Wood, EF ;
Schaake, JC ;
Robock, A ;
Marshall, C ;
Sheffield, J ;
Duan, QY ;
Luo, LF ;
Higgins, RW ;
Pinker, RT ;
Tarpley, JD ;
Meng, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D22)
[8]   A New Vertical Grid Nesting Capability in the Weather Research and Forecasting (WRF) Model [J].
Daniels, Megan H. ;
Lundquist, Katherine A. ;
Mirocha, Jeffrey D. ;
Wiersema, David J. ;
Chow, Fotini K. .
MONTHLY WEATHER REVIEW, 2016, 144 (10) :3725-3747
[9]   Flow over Hills: A Large-Eddy Simulation of the Bolund Case [J].
Diebold, Marc ;
Higgins, Chad ;
Fang, Jiannong ;
Bechmann, Andreas ;
Parlange, Marc B. .
BOUNDARY-LAYER METEOROLOGY, 2013, 148 (01) :177-194
[10]   THE MATERHORN Unraveling the Intricacies of Mountain Weather [J].
Fernando, H. J. S. ;
Pardyjak, E. R. ;
Di Sabatino, S. ;
Chow, F. K. ;
De Wekker, S. F. J. ;
Hoch, S. W. ;
Hacker, J. ;
Pace, J. C. ;
Pratt, T. ;
Pu, Z. ;
Steenburgh, W. J. ;
Whiteman, C. D. ;
Wang, Y. ;
Zajic, D. ;
Balsley, B. ;
Dimitrova, R. ;
Emmitt, G. D. ;
Higgins, C. W. ;
Hunt, J. C. R. ;
Knievel, J. C. ;
Lawrence, D. ;
Liu, Y. ;
Nadeau, D. F. ;
Kit, E. ;
Blomquist, B. W. ;
Conry, P. ;
Coppersmith, R. S. ;
Creegan, E. ;
Felton, M. ;
Grachev, A. ;
Gunawardena, N. ;
Hang, C. ;
Hocut, C. M. ;
Huynh, G. ;
Jeglum, M. E. ;
Jensen, D. ;
Kulandaivelu, V. ;
Lehner, M. ;
Leo, L. S. ;
Liberzon, D. ;
Massey, J. D. ;
McEnerney, K. ;
Pal, S. ;
Price, T. ;
Sghiatti, M. ;
Silver, Z. ;
Thompson, M. ;
Zhang, H. ;
Zsedrovits, T. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2015, 96 (11) :1945-1968