Parameters identification of solar cell models using generalized oppositional teaching learning based optimization

被引:337
作者
Chen, Xu [1 ]
Yu, Kunjie [2 ]
Du, Wenli [2 ]
Zhao, Wenxiang [1 ]
Liu, Guohai [1 ]
机构
[1] Jiangsu Univ, Sch Elect & Informat Engn, Zhenjiang 212013, Peoples R China
[2] E China Univ Sci & Technol, Key Lab Adv Control & Optimizat Chem Proc, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Solar cell models; Parameter identification; Teaching learning based optimization; Generalized opposition-based learning; DIFFERENTIAL EVOLUTION; ALGORITHM; EXTRACTION; DESIGN; TLBO;
D O I
10.1016/j.energy.2016.01.052
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a new optimization method called GOTLBO (generalized oppositional teaching learning based optimization) to identify parameters of solar cell models. GOTLBO employs generalized opposition-based learning to basic teaching learning based optimization through the initialization step and generation jumping so that the convergence speed is enhanced. The performance of GOTLBO is comprehensively evaluated in thirteen benchmark functions and two parameter identification problems of solar cell models, i.e., single diode model and double diode model. Simulation results indicate the excellent performance of GOTLBO compared with four well-known evolutionary algorithms and other parameter extraction techniques proposed in the literature. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 180
页数:11
相关论文
共 42 条
  • [1] Flower Pollination Algorithm based solar PV parameter estimation
    Alam, D. F.
    Yousri, D. A.
    Eteiba, M. B.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2015, 101 : 410 - 422
  • [2] Optimal extraction of solar cell parameters using pattern search
    AlHajri, M. F.
    El-Naggar, K. M.
    AlRashidi, M. R.
    Al-Othman, A. K.
    [J]. RENEWABLE ENERGY, 2012, 44 : 238 - 245
  • [3] A new estimation approach for determining the I-V characteristics of solar cells
    AlRashidi, M. R.
    AlHajri, M. F.
    El-Naggar, K. M.
    Al-Othman, A. K.
    [J]. SOLAR ENERGY, 2011, 85 (07) : 1543 - 1550
  • [4] [Anonymous], 2011, P 2011 INT C EL INF
  • [5] Artificial bee swarm optimization algorithm for parameters identification of solar cell models
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. APPLIED ENERGY, 2013, 102 : 943 - 949
  • [6] Parameter identification for solar cell models using harmony search-based algorithms
    Askarzadeh, Alireza
    Rezazadeh, Alireza
    [J]. SOLAR ENERGY, 2012, 86 (11) : 3241 - 3249
  • [7] Testing the performance of teaching-learning based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases
    Baykasoglu, Adil
    Hamzadayi, Alper
    Kose, Simge Yelkenci
    [J]. INFORMATION SCIENCES, 2014, 276 : 204 - 218
  • [8] Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
    Brest, Janez
    Greiner, Saso
    Boskovic, Borko
    Mernik, Marjan
    Zumer, Vijern
    [J]. IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) : 646 - 657
  • [9] A COMPARATIVE-STUDY OF EXTRACTION METHODS FOR SOLAR-CELL MODEL PARAMETERS
    CHAN, DSH
    PHILLIPS, JR
    PHANG, JCH
    [J]. SOLID-STATE ELECTRONICS, 1986, 29 (03) : 329 - 337
  • [10] Easwarakhanthan T., 1986, International Journal of Solar Energy, V4, P1, DOI 10.1080/01425918608909835