Gigahertz Low-Loss and High Power Handling Acoustic Delay Lines Using Thin-Film Lithium-Niobate-on-Sapphire

被引:31
作者
Lu, Ruochen [1 ,2 ]
Yang, Yansong [1 ]
Hassanien, Ahmed E. [1 ]
Gong, Songbin [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Urbana, IL 61801 USA
[2] Univ Texas Austin, Dept Elect & Comp Engn, Austin, TX 78712 USA
关键词
Acoustic devices; delay lines; lithium niobate; microelectromechanical systems; piezoelectric devices; shear horizontal surface acoustic wave (SH-SAW); transversal filters; ELASTIC CONSTANTS; WAVE RESONATORS; FILTERS;
D O I
10.1109/TMTT.2021.3074918
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this work, we present the first group of gigahertz low-loss, wideband, and high power handling delay lines (ADLs) using a thin-film lithium niobate (LiNbO3)-on-sapphire platform. The ADLs leverage a single-phase unidirectional transducer (SPUDT) to efficiently excite the shear horizontal surface acoustic wave (SH- SAW) in the film stack. The fabricated miniature SH-SAW ADL at 1.1 GHz shows a low insertion loss (IL) of 2.8 dB, a wide fractional bandwidth (FBW) of 6.14%, and a fast phase velocity of 5127 m/s. The device also features a high 1-dB compression point (P1dB) of 30.4 dBm. The temperature coefficient of frequency is -45 ppm/K. ADLs with delays between 12 and 172 ns have been implemented, with IL between 2.8 and 8.3 dB. SH-SAW propagation characteristics are extracted, showing a group velocity of 4747 m/s and a propagation loss of 6.73 dB/mm or 31.9 dB/mu s. The simultaneous low-loss and high power handling illustrate the great potential of LiNbO3-on- sapphire for RF and cross domain applications at gigahertz.
引用
收藏
页码:3246 / 3254
页数:9
相关论文
共 52 条
[1]   Electrothermal Modeling of Surface Acoustic Wave Resonators and Filters [J].
Akstaller, Wolfgang ;
Weigel, Robert ;
Hagelauer, Amelie .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (11) :2423-2432
[2]   High-frequency surface acoustic wave devices based on epitaxial Z-LiNbO3 layers on sapphire [J].
Almirall, Anthony ;
Oliveri, Stefania ;
Daniau, William ;
Margueron, Samuel ;
Baron, Thomas ;
Boulet, Pascal ;
Ballandras, Sylvain ;
Chamaly, Stephane ;
Bartasyte, Ausrine .
APPLIED PHYSICS LETTERS, 2019, 114 (16)
[3]   ATTENUATION OF ACOUSTIC-WAVES IN LITHIUM-NIOBATE [J].
BAJAK, IL ;
MCNAB, A ;
RICHTER, J ;
WILKINSON, CDW .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1981, 69 (03) :689-695
[4]  
Bray R. C., 1990, U.S. Patent, Patent No. [4 931 752 A, 4931752]
[5]   Ultra-wideband SAW correlator [J].
Brocato, Robert ;
Skinner, Jack ;
Wouters, Gregg ;
Wendt, Joel ;
Heller, Edwin ;
Blaich, Jonathan .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2006, 53 (09) :1554-1556
[6]  
Cao Z., 2018, P IEEE INT ULTR S IU, P1
[7]   GaN-based SAW delay-line oscillator [J].
Ciplys, D ;
Rimeika, R ;
Sereika, A ;
Gaska, R ;
Shur, MS ;
Yang, JW ;
Khan, MA .
ELECTRONICS LETTERS, 2001, 37 (08) :545-546
[8]  
Ghosh S., 2018, 2018 IEEE INT FREQ C, P1, DOI [10.1109/FCS.2018.8597441, DOI 10.1109/FCS.2018.8597441]
[9]   Acoustoelectric amplification of Rayleigh waves in low sheet density AlGaN/GaN heterostructures on sapphire [J].
Ghosh, Siddhartha ;
Hollis, Mark A. ;
Molnar, Richard J. .
APPLIED PHYSICS LETTERS, 2019, 114 (06)
[10]   EventGraD: Event-Triggered Communication in Parallel Stochastic Gradient Descent [J].
Ghosh, Soumyadip ;
Gupta, Vijay .
2020 IEEE/ACM WORKSHOP ON MACHINE LEARNING IN HIGH PERFORMANCE COMPUTING ENVIRONMENTS (MLHPC 2020) AND WORKSHOP ON ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING FOR SCIENTIFIC APPLICATIONS (AI4S 2020), 2020, :1-8