A Note on Limit Analysis

被引:1
作者
Segev, Reuven [1 ]
Falach, Lior [1 ]
机构
[1] Ben Gurion Univ Negev, Dept Mech Engn, IL-84105 Beer Sheva, Israel
关键词
limit analysis; plasticity; reduced kinematic multiplier; static multiplier; Banach's closed range theorem; BOUNDED DEFORMATION;
D O I
10.1177/1081286509344265
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We present a mathematical framework for the theory of limit analysis of rigid, perfectly plastic bodies where the equality of the static multiplier and kinematic multiplier for incompressible fields is formulated and proved in a compact form. Assuming that the failure criterion is a norm on the space of deviatoric stress fields, we use standard properties of linear operators on Banach spaces.
引用
收藏
页码:854 / 869
页数:16
相关论文
共 13 条
[1]  
[Anonymous], 2002, Graduate Studies in Mathematics
[2]  
FALACH L, 2009, LOAD CAPACITY UNPUB
[3]  
Galdi GP., 1994, An Introduction to the Mathematical Theory of the Navier-Stokes Equations
[4]  
KAMENJARZH AJ, 1996, LIMIT ANAL SOLIDS ST
[5]  
Ladyzhenskaya O. A., 1963, The mathematical theory of viscous incompressible flow
[6]  
Rozvany G.I. N., 1989, STRUCTURAL DESIGN VI
[7]  
Save M., 1985, STRUCTURAL OPTIMIZAT
[9]   Load capacity of bodies [J].
Segev, Reuven .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 2007, 42 (02) :250-257
[10]  
TEMAM R, 1980, ARCH RATION MECH AN, V75, P7